›› 2019, Vol. 31 ›› Issue (4): 83-98.

• 市场营销 • 上一篇    下一篇

非合约型客户终身价值的稳健性度量:经典方法与机器学习算法的综合测算研究

成栋1, 孙莹璐1, 薛薇2,3   

  1. 1. 中国人民大学商学院, 北京 100872;
    2. 中国人民大学应用统计科学研究中心, 北京 100872;
    3. 中国人民大学统计学院, 北京 100872
  • 收稿日期:2018-07-25 出版日期:2019-04-28 发布日期:2019-04-26
  • 通讯作者: 薛薇,中国人民大学应用统计科学研究中心、中国人民大学统计学院副教授,硕士生导师,博士。
  • 作者简介:成栋,中国人民大学商学院教授,博士生导师,博士;孙莹璐,中国人民大学商学院博士研究生
  • 基金资助:

    中国人民大学"中央高校建设世界一流大学(学科)和特色发展引导专项资金"。

Robust CLV Measurement in Non-contractual Settings:A Study of CLV Measurement Combining Probability Models and Machine Learning Algorithms

Cheng Dong1, Sun Yinglu1, Xue Wei2,3   

  1. 1. Business School, Renmin University of China, Beijing 100872;
    2. Center for Applied Statistics of Renmin University of China, Beijing 100872;
    3. School of Statistics, Renmin University of China, Beijing 100872
  • Received:2018-07-25 Online:2019-04-28 Published:2019-04-26

摘要:

客户终身价值(CLV)是企业进行客户关系管理的基础,然而非合约关系下客户终身价值的度量一直是研究的难点。本文重点探讨了以Pareto/NBD和BG/NBD为代表的经典概率模型和以GAM和SVM为代表的机器学习算法在非合约客户终身价值度量中的应用。通过对两个数据集的实证研究,对比了四种方法的特点和预测能力。研究发现经典概率模型的预测值较为平稳,适用于描述消费者日常消费规律;GAM则对数据中极端变化的捕捉跟踪能力较强,适用于预测由于门店促销、线上促销和节假日等带来的不规律的集中消费或延时消费的情况。经典方法和机器学习算法对客户终身价值的预测各有所长,基于单一方法的预测会有一定偏差,为得到小偏差和高稳健性的CLV估计,本文认为基于多方法的综合预测是理想的CLV建模策略。

关键词: 客户终身价值(CLV), Pareto/NBD, BG/NBD, 广义可加模型(GAM), 支持向量机(SVM)

Abstract:

Customer lifetime value (CLV) is a key concept in customerrelationship management. However, measuring CLV, especially CLV in non-contractual settings is one of the most challenging research topics. In this paper, we explore two probability models (Pareto/NBD and BG/NBD) and two machine learning models (GAM and SVM) in CLV modeling. Through two empirical studies, we compare the characteristics and prediction performance of the four mentioned approaches. The study shows that the prediction performance of classical probability models is very stable, which means that probability models are able to capture the regular patterns of consumers' daily consumption. While GAM has a good performance in capturing extreme data, making that an advantage to reflect irregular consumptions such as stock up resulted from store promotion, online promotion or holidays and festivals. Since each approach has its own strong points, we believe that an integrated CLV measurement combining probability models and machine learning algorithms is an ideal solution to ensure the robustness of CLV measurement.

Key words: customer lifetime value (CLV), Pareto/NBD, BG/NBD, generalized additive model (GAM), support vector machine (SVM)