管理评论 ›› 2023, Vol. 35 ›› Issue (10): 310-319.

• 公共管理 • 上一篇    下一篇

智能制造政策的挖掘与量化评价研究——以大湾区九市为例

宋铁波, 姚浩, 黄键斌   

  1. 华南理工大学工商管理学院, 广州 510641
  • 收稿日期:2021-07-21 出版日期:2023-10-28 发布日期:2023-11-27
  • 通讯作者: 姚浩(通讯作者),华南理工大学工商管理学院硕士研究生。
  • 作者简介:宋铁波,华南理工大学工商管理学院教授,博士生导师,博士;黄键斌,华南理工大学工商管理学院硕士研究生。
  • 基金资助:
    国家社会科学基金一般项目(20BGL103)。

Research on the Mining and Quantitative Evaluation of Intelligent Manufacturing Policies——Theory and Evidence Based on Nine Cities in the Greater Bay Area of China

Song Tiebo, Yao Hao, Huang Jianbin   

  1. School of Business Administration, South China University of Technology, Guangzhou 510641
  • Received:2021-07-21 Online:2023-10-28 Published:2023-11-27

摘要: 对智能制造政策的挖掘和量化评价有利于政策执行落实,也有利于后续配套政策的制定,从而促进我国智能制造进程的推进,但目前此方面研究数量较少。基于大湾区九市2014—2020年发布的38篇智能制造领域政策文件的文本挖掘与分析,结合文献的政策维度分类,构建了包含9个一级变量和39个二级变量的智能制造政策PMC指数模型,并选取了上述九市的典型纲领性政策文件各一篇进行实证,结果发现这些政策总体处于优秀水平,但仍可以在政策力度、政策性质、政策时效、激励措施、协同对象等方面进行优化,地区政策间的重心重复问题也应得到重视。该模型为大湾区九市智能制造政策的优化提供了依据,同时也为其他尚处于智能制造探索阶段的地区提供了政策维度的参考。

关键词: 智能制造政策, 政策评价, 文本挖掘, PMC指数模型

Abstract: The mining and quantitative evaluation of smart manufacturing policies are conducive to the implementation of such policies, the formulation of subsequent supporting policies and the growth of China’s smart manufacturing sector, but the existing studies in this area are scarce. In this paper, based on the text mining and analysis of 38 smart manufacturing policies released by nine cities in the Greater Bay Area from 2014 to 2020, and by classifying the policy dimensions in the literature, we construct a PMC index model of smart manufacturing policies containing 9 primary variables and 39 secondary variables, and select one typical programmatic policy of each of the above nine cities for empirical evidence. It is found that these policies are generally at an excellent level, but still can be optimized in terms of policy strength, policy nature, policy timeliness, incentives, synergy objects, etc. The problem of duplication of focus among regional policies should also be paid attention to. The model provides a basis for the optimization of smart manufacturing policies in nine cities in the Greater Bay Area, and also provides a reference value of policy dimensions for other regions that are still in the exploration stage of smart manufacturing.

Key words: intelligent manufacturing policy, policy evaluation, text mining, PMC index model