[1] Fama E. F. Efficient Capital Markets: II[J]. The Journal of Finance, 1991,46(5):1575-1617 [2] 陈锐刚,杨如彦. 有效市场假说:行为金融理论和现代金融理论[J]. 管理评论, 2004,16(11):46-52 [3] Huang C. J., Yang D. X., Chuang Y. T. Application of Wrapper Approach and Composite Classifier to the Stock Trend Prediction[J]. Expert Systems with Applications, 2008,34(4):2870-2878 [4] Malkiel B. G. The Efficient Market Hypothesis and Its Critics[J]. The Journal of Economic Perspectives, 2003,17(1):59-82 [5] Paiva F. D., Cardoso R. T. N., Hanaoka G. P., et al. Decision-making for Financial Trading: A Fusion Approach of Machine Learning and Portfolio Selection[J]. Expert Systems with Applications, 2019,115:635-655 [6] Kim Y., Enke D. Developing a Rule Change Trading System for the Futures Market Using Rough Set Analysis[J]. Expert Systems with Applications, 2016,59:165-173 [7] Kampouridis M., Otero F. E. B. Evolving Trading Strategies Using Directional Changes[J]. Expert Systems with Applications, 2017,73:145-160 [8] Sezer O. B., Ozbayoglu A. M. Algorithmic Financial Trading with Deep Convolutional Neural Networks: Time Series to Image Conversion Approach[J]. Applied Soft Computing, 2018,70:525-538 [9] Brabazon A., O'Neill M. Biologically Inspired Algorithms for Financial Modelling[M]. Springer Science & Business Media, 2006 [10] Lo A. W., Mamaysky H., Wang J. Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation[J]. The Journal of Finance, 2000,55(4):1705-1770 [11] Patel J., Shah S., Thakkar P., et al. Predicting Stock and Stock Price Index Movement Using Trend Deterministic Data Preparation and Machine Learning Techniques[J]. Expert Systems with Applications, 2015,42(1):259-268 [12] Engle R. Risk and Volatility: Econometric Models and Financial Practice[J]. American Economic Review, 2004,94(3):405-420 [13] Oliveira F. A. D., Nobre C. N., Zárate L. E. Applying Artificial Neural Networks to Prediction of Stock Price and Improvement of the Directional Prediction Index-Case Study of PETR4, Petrobras, Brazil[J]. Expert Systems with Applications, 2013,40(18):7596-7606 [14] 张思奇,马刚,冉华. 股票市场风险、收益与市场效率:ARMA-ARCH-模型[J]. 世界经济, 2000, 23(5):19-28 [15] 莫扬. 股票市场波动性的国际比较研究[J]. 数量经济技术经济研究, 2004,21(10):49-56 [16] Darrat A. F., Otero R. Price Discovery and Volatility Spillovers in Index Futures Markets: Some Evidence from Mexico[J]. Journal of Banking & Finance, 2004,28(617):3037-3054 [17] Byun S. J., Cho H. Forecasting Carbon Futures Volatility Using GARCH Models with Energy Volatilities[J]. Energy Economics, 2013,40(2):207-221 [18] Wilhelmsson A. GARCH Forecasting Performance under Different Distribution Assumptions[J]. Journal of Forecasting, 2010,25(8):561-578 [19] Hamid S. A., Iqbal Z. Using Neural Networks for Forecasting Volatility of S&P 500 Index Futures Prices[J]. Journal of Business Research, 2004,57(10):1116-1125 [20] Chen K., Zhou Y., Dai F. A LSTM-Based Method for Stock Returns Prediction: A Case Study of China Stock Market[C]. IEEE International Conference on Big Data (Big Data), 2015 [21] Kristjanpoller R. W., Michell V. K. A Stock Market Risk Forecasting Model Through Integration of Switching Regime, ANFIS and GARCH Techniques[J]. Applied Soft Computing Journal, 2018,67:106-116 [22] Kim H. Y., Won C. H. Forecasting the Volatility of Stock Price Index: A Hybrid Model Integrating LSTM with Multiple GARCH-Type Models[J]. Expert Systems with Applications, 2018,103:25-37 [23] Wang S., Yu L., Lai K. K. A Novel Hybrid AI System Framework for Crude Oil Price Forecasting[A]. Chinese Academy of Sciences Symposium on Data Mining and Knowledge Management [C]. Berlin, Heidelberg: Springer, 2004 [24] 汪寿阳,余乐安,黎建强. TEI@I方法论及其在外汇汇率预测中的应用[J]. 管理学报, 2007, 4(1):21-27 [25] De Long J. B., Shleifer A., Summers L. H., et al. Noise Trader Risk in Financial Markets[J]. Journal of Political Economy, 1990,98(4):703-738 [26] 李学峰,王兆宇,李佳明. 噪声交易与市场渐进有效性[J]. 经济学(季刊), 2013,12(3):913-934 [27] 朱莉. 高频股指期现货市场波动溢出效应的研究——基于EEMD的小波降噪[J]. 技术经济与管理研究, 2015, 22(11):86-90 [28] 龚旭,文凤华,黄创霞,等. HAR-RV-EMD-J模型及其对金融资产波动率的预测研究[J]. 管理评论, 2017,29(1):19-32 [29] 王晓芳,王瑞君. 上证综指波动特征及收益率影响因素研究——基于EEMD和VAR模型分析[J]. 南开经济研究, 2012,29(6):82-99 [30] Dragomiretskiy K., Zosso D. Variational Mode Decomposition[J]. IEEE Transactions on Signal Processing, 2013,62(3):531-544 [31] Liu Y., Yang G., Li M., et al. Variational Mode Decomposition Denoising Combined the Detrended Fluctuation Analysis[J]. Signal Processing, 2016,125:349-364 [32] Wang D., Wei S., Luo H., et al. A Novel Hybrid Model for Air Quality Index Forecasting Based on Two-Phase Decomposition Technique and Modified Extreme Learning Machine[J]. Science of the Total Environment, 2017,580:719-733 [33] Lahmiri S. Intraday Stock Price Forecasting Based on Variational Mode Decomposition[J]. Journal of Computational Science, 2016,12:23-27 [34] Zhu Q., Zhang F., Liu S., et al. A Hybrid VMD -BiGRU Model for Rubber Futures Time Series Forecasting[J]. Applied Soft Computing, 2019,84:105739 [35] Liu W., Cao S., Chen Y. Applications of Variational Mode Decomposition in Seismic Time-Frequency Analysis[J]. Geophysics, 2016,81(5):365-378 [36] Abdoos A. A., Mianaei P. K., Ghadikolaei M. R. Combined VMD-SVM Based Feature Selection Method for Classification of Power Quality Events[J]. Applied Soft Computing, 2016,38:637-646 [37] Zhang C., Zhou J., Li C., et al. A Compound Structure of ELM Based on Feature Selection and Parameter Optimization Using Hybrid Backtracking Search Algorithm for Wind Speed Forecasting[J]. Energy Conversion and Management, 2017,143:360-376 [38] Hestenes M. R. Multiplier and Gradient Methods[J]. Journal of Optimization Theory and Applications, 1969,4(5):303-320 [39] Bengio Y., Simard P., Frasconi P. Learning Long-Term Dependencies with Gradient Descent Is Difficult[J]. IEEE Transactions on Neural Networks, 1994,5(2):157-166 [40] Mou L., Ghamisi P., Zhu X. X. Deep Recurrent Neural Networks for Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017,55(7):3639-3655 [41] Hernandez-Matamoros A., Fujita H., Perez-Meana H. A Novel Approach to Create Synthetic Biomedical Signals Using BiRNN[J]. Information Sciences, 2020,541:218-241 [42] Kadari R., Zhang Y., Zhang W., et al. CCG Super Tagging via Bidirectional LSTM-CRF Neural Architecture[J]. Neurocomputing, 2018,283:31-37 [43] Ullah A., Ahmad J., Muhammad K., et al. Action Recognition in Video Sequences Using Deep Bi-Directional LSTM With CNN Features[J]. IEEE Access, 2018,6(99):1155-1166 [44] Schuster M., Paliwal K. K. Bidirectional Recurrent Neural Networks[J]. IEEE Transactions on Signal Processing, 2002,45(11):2673-2681 [45] Xu Q., Zhou Y., Jiang C., et al. A Large CVaR-Based Portfolio Selection Model with Weight Constraints[J]. Economic Modelling, 2016,59:436-447 [46] 汤铃,李建平,孙晓蕾,等. 基于模态分解的国家风险多尺度特征分析[J]. 管理评论, 2012,24(8):3-10 [47] 王帅,汤铃,余乐安. 基于单变量分解集成的牛奶消费需求预测研究[J]. 系统科学与数学, 2013,33(1):11-19 |