管理评论 ›› 2022, Vol. 34 ›› Issue (9): 27-34.

• 经济与金融管理 • 上一篇    下一篇

基于EEMD-LSTM的中国保险业系统性风险预警研究

唐振鹏, 吴俊传, 张婷婷, 陈凯杰   

  1. 福州大学经济与管理学院, 福州 350108
  • 收稿日期:2019-08-26 出版日期:2022-09-28 发布日期:2022-10-28
  • 通讯作者: 吴俊传(通讯作者),福州大学经济与管理学院博士研究生
  • 作者简介:唐振鹏,福州大学经济与管理学院院长,教授,博士生导师;张婷婷,福州大学经济与管理学院博士研究生;陈凯杰,福州大学经济与管理学院硕士研究生。
  • 基金资助:
    国家自然科学基金项目(71573042;71973028)。

An EEMD-LSTM Model Based Research on Early Warning of the Systematic Risk in China Insurance Industry

Tang Zhenpeng, Wu Junchuan, Zhang Tingting, Chen Kaijie   

  1. College of Economics and Management, Fuzhou University, Fuzhou 350108
  • Received:2019-08-26 Online:2022-09-28 Published:2022-10-28

摘要: 本文采用保险业压力指数来衡量中国保险业系统性风险状况,并通过预测保险业压力指数的未来走势来进行保险业系统性风险预警。借鉴TEI@I复杂系统研究方法论中的分解集成技术,同时结合当前人工智能、深度学习领域的研究成果,构建EEMD-LSTM模型进行保险业系统性风险预警。实证结果表明,EEMD分解集成技术在预测非线性、非平稳复杂时间序列方面具有明显优势;同时,LSTM模型能有效刻画时间序列之间的相依、长记忆特性。EEMD-LSTM模型组合预测精度优于其他模型。

关键词: 保险业, 系统性风险, 预警, 集合经验模态分解, 长短期记忆神经网络

Abstract: This paper constructs an insurance industry stress index to measure the systemic risk of China’s insurance industry, and predicts the future risks of the insurance industry by predicting the future trend of the insurance industry’s stress index. Drawing on the EEMD decomposition integration technology in the TEI@I complex system research methodology, combined with the current research results in the field of artificial intelligence and deep learning, the EEMD-LSTM model is constructed to carry out the systemic risk warning of the insurance industry. The empirical results show that EEMD decomposition integration technology has obvious advantages in predicting nonlinear and non-stationary complex time series. At the same time, LSTM model can effectively describe the dependence and long memory characteristics between time series. The EEMD-LSTM model combination prediction accuracy is superior to other models.

Key words: insurance, systemic risk, early warning, ensemble empirical mode decomposition, long short-term memory neural network