[1] Karabulut G., Bilgin M. H., Demir E., et al. How Pandemics Affect Tourism:International Evidence[J]. Annals of Tourism Research, 2020, 84:102991 [2] Kim Y. R., Liu A. Social Distancing, Trust and Post-COVID-19 Recovery[J]. Tourism Management, 2022, 88:104416 [3] Wickramasinghe K., Ratnasiri S. The Role of Disaggregated Search Data in Improving Tourism Forecasts:Evidence from Sri Lanka[J]. Current Issues in Tourism, 2020, 24(19):2740-2754 [4] 朱亮, 张建萍. 基于Bernstein Copula函数的中国入境旅游需求预测[J]. 旅游学刊, 2017, 32(11):41-48 Zhu L., Zhang J. P. Forecasting Chinese Inbound Tourism Demand with Bernstein Copula Function[J]. Tourism Tribune, 2017, 32(11):41-48 [5] Li H., Hu M., Li G. Forecasting Tourism Demand with Multisource Big Data[J]. Annals of Tourism Research, 2020, 83:102912 [6] Li X., Law R., Xie G., et al. Review of Tourism Forecasting Research with Internet Data[J]. Tourism Management, 2021, 83:104245 [7] 任乐, 崔东佳. 基于网络搜索数据的国内旅游客流量预测研究——以北京市国内旅游客流量为例[J]. 经济问题探索, 2014(4):67-73 Ren L., Cui D. J. Research on Domestic Tourist Flow Prediction Based on Internet Search Data-A Case Study of Beijing's Domestic Tourist Flow[J]. Inquiry Into Economic Issues, 2014, (4):67-73 [8] 王炼, 贾建民. 基于网络信息搜索的旅游需求预测——来自黄金周的证据[J]. 系统管理学报, 2014, 23(3):345-350 Wang L., Jia J. M. Forecasting of Tourism Demand in the Golden Week with Online Information Search[J]. Journal of Systems & Management, 2014, 23(3):345-350 [9] Li X., Law R. Forecasting Tourism Demand with Decomposed Search Cycles[J]. Journal of Travel Research, 2020, 59(1):52-68 [10] Li S., Chen T., Wang L., et al. Effective Tourist Volume Forecasting Supported by PCA and Improved BPNN Using Baidu Index[J]. Tourism Management, 2018, 68:116-126 [11] Peng G., Liu Y., Wang J., et al. Analysis of the Prediction Capability of Web Search Data Based on the HE-TDC Method-Prediction of the Volume of Daily Tourism Visitors[J]. Journal of Systems Science and Systems Engineering, 2017, 26(2):163-182 [12] 李晓炫, 吕本富, 曾鹏志, 等. 基于网络搜索和CLSI-EMD-BP的旅游客流量预测研究[J]. 系统工程理论与实践, 2017, 37(1):106-118 Li X. X., Lv B. F., Zeng Z. P., et al. Tourism Prediction Using Web Search Data Based on CLSI-EMD-BP[J]. System Engineering-Theory & Practice, 2017, 37(1):106-118 [13] Pan B., Yang Y. Forecasting Destination Weekly Hotel Occupancy with Big Data[J]. Journal of Travel Research, 2017, 56(7):957-970 [14] Liu Y., Tseng F., Tseng Y. Big Data Analytics for Forecasting Tourism Destination Arrivals with the Applied Vector Autoregression Model[J]. Technological Forecasting & Social Change, 2018, 130:123-134 [15] Li X., Law R., Xie G., et al. Review of Tourism Forecasting Research with Internet Data[J]. Tourism Management, 2021, 83:104245 [16] Bi J., Li H., Fan Z. Tourism Demand Forecasting with Time Series Imaging:A Deep Learning Model[J]. Annals of Tourism Research, 2021, 90:103255 [17] 梁昌勇, 马银超, 陈荣, 等. 基于SVR-ARMA组合模型的日旅游需求预测[J]. 管理工程学报, 2015, 29(1):122-127 Liang C. Y., Ma Y. C., Chen R. et al. The Daily Forecasting Tourism Demand Based on SVR-ARMA Combination Model[J]. Journal of Industrial Engineering and Engineering Management, 2015, 29(1):122-127 [18] 梁小珍, 张晴, 杨明歌. 面向网络搜索数据的航空客运需求两阶段分解集成预测模型[J]. 管理评论, 2021, 33(5):236-245 Liang X. Z., Zhang Q., Yang M. G. A Two-stage Decomposition Ensemble Model with Internet Search Data for Air Passenger Demand Forecasting[J]. Management Review, 2021, 33(5):236-245 [19] Lim B., Arik S. O., Loeff N., et al. Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting[J]. International Journal of Forecasting, 2021, 37(4):1748-1764 [20] Liu Y., Chen Y., Wu S., et al. Composite Leading Search Index:A Preprocessing Method of Internet Search Data for Stock Trends Prediction[J]. Annals of Operations Research, 2015, 234(1):77-94 [21] Fu C. M., Jiang C., Chen G. S., et al. An Adaptive Differential Evolution Algorithm with an Aging Leader and Challengers Mechanism[J]. Applied Soft Computing, 2017, 57:60-73 [22] Bi J., Liu Y., Li H. Daily Tourism Volume Forecasting for Tourist Attractions[J]. Annals of Tourism Research, 2020, 83:102923 [23] 李洁, 彭其渊, 文超. 基于LSTM深度神经网络的高速铁路短期客流预测研究[J]. 系统工程理论与实践, 2021, 41(10):2669-2682 Li J., Peng Q. Y., Wen C. Short Term Passenger Flow Prediction of High Speed Railway Based on LSTM Deep Neural Network[J]. System Engineering-Theory & Practice, 2021, 41(10):2669-2682 [24] 王会娟, 陈红佳, 高思琴, 等. 基于TEI@I方法论的玉米期货价格预测研究[J]. 管理评论, 2020, 32(7):293-301 Wang H. J., Chen H. J., Gao S. Q., et al. Forecasting Corn Futures Prices Based on TEI@I Methodology[J]. Management Review, 2020, 32(7):293-301 |