[1] 吴佳璋,徐艺文. 中国港口:持续复苏强劲增长[J]. 中国远洋海运, 2021,(7):50-54 Wu J. Z., Xu Y. W. China's Ports:Sustained Recovery and Strong Growth[J]. Maritime China, 2021,(7):50-54 [2] 鲁渤,杨显飞,汪寿阳. 基于情境变动的港口吞吐量预测模型[J]. 管理评论, 2018,30(1):195-201 Lu B., Yang X. F., Wang S. Y. Port Throughput Forecasting Model Based on Context Change[J]. Management Review, 2018,30(1):195-201 [3] Erdem E., Shi J. ARMA Based Approaches for Forecasting the Tuple of Wind Speed and Direction[J]. Applied Energy, 2011,88(4):1405-1414 [4] Dantas T. M., Oliveira F. L. C., Repolho H. M. V. Air Transportation Demand Forecast through Bagging Holt-Winters Methods[J]. Journal of Air Transport Management, 2017,59(1):113-123 [5] 王书平,朱艳云. 基于多尺度分析的小麦价格预测研究[J]. 中国管理科学, 2016,24(5):85-91 Wang S. P, Zhu Y. Y. Forecasting of Wheatprice Based on Multi-scale Analysis[J]. Chinese Journal of Management Science, 2016,24(5):85-91 [6] Singhal D., Swarup K. Electricity Price Forecasting Using Artificial Neural Networks[J]. Electrical Power and Energy Systems, 2011,33(1):550-555 [7] 肖智,李玲玲. PSO-SVM在高速公路交通量预测中的应用[J]. 管理评论, 2011,23(12):32-37 Xiao Z., Li L. L. Forecast of Highway Traffic Volume Using PSO-SVM[J]. Management Review, 2011,23(12):32-37 [8] Cao Q., Ewing B., Thompson M. Forecasting Wind Speed with Recurrent Neural Networks[J]. European Journal of Operational Research, 2012,221(1):148-154 [9] Shen W., Guo X., Wu C., et al. Forecasting Stock Indices Using Radial Basis Function Neural Networks Optimized by Artificial Fish Swarm Algorithm[J]. Knowledge-Based Systems, 2011,24(1):378-385 [10] 田歆,曹志刚,骆佳伟,等. 基于TEI@I方法论的香港集装箱吞吐量预测方法[J]. 运筹与管理, 2009,18(4):82-89 Tian X., Cao Z. G., Luo J. W., et al. Forecasting the Container Throughput of Hong Kong through TEI@I[J]. Operations Research and Management Science, 2009,18(4):82-89 [11] 周桦,卢志源,郑敏. 基于TEI@I方法的中国保险业保费收入预测[J]. 管理评论, 2020,32(7):166-179 Zhou H., Lu Z. Y., Zheng M. Forecasting Premium Income of China's Insurance Industry Based on TEI@I Methodology[J]. Management Review, 2020,32(7):166-179 [12] 孙少龙,魏云捷,汪寿阳. 基于分解-聚类-集成学习的汇率预测方法[J]. 系统工程理论与实践, 2022,42(3):664-677 Sun S. L., Wei Y. J., Wang S. Y. Exchange Rates Forecasting with Decomposition-Clustering-Ensemble Learning Approach[J]. Systems Engineering-Theory & Practice, 2022,42(3):664-677 [13] Du P., Wang J., Yang W., et al. Container Throughput Forecasting Using a Novel Hybrid Learning Method with Error Correction Strategy[J]. Knowledge-Based Systems, 2019,182(15):104853 [14] 张大斌,蔡超敏,凌立文,等. 基于CEEMD与GA-SVR的猪肉价格集成预测模型[J]. 系统科学与数学, 2020,40(6):1061-1073 Zhang D. B., Cai C. M., Ling L. W., et al. Pork Price Ensemble Prediction Model Based on CEEMD and GA-SVR[J]. Journal of Systems Science and Mathematical Sciences, 2020,40(6):1061-1073 [15] 汤霞,匡海波,郭媛媛,等. 基于VMD的中国出口集装箱运价指数分析与组合预测[J]. 系统工程理论与实践, 2021,41(1):176-187 Tang X., Kuang H. B., Guo Y. Y., et al. Analysis and Combined Forecasting of China Containerized Freight Index Based on VMD[J]. Systems Engineering-Theory & Practice, 2021,41(1):176-187 [16] 梁小珍,郭战坤,张倩文,等. 基于奇异谱分析的航空客运需求分析与分解集成预测模型[J]. 系统工程理论与实践, 2020,40(7):1844-1855 Liang X. Z., Guo Z. K., Zhang Q. W., et al. An Analysis and Decomposition Ensemble Prediction Model for Air Passenger Demand Based on Singular Spectrum Analysis[J]. Systems Engineering-Theory & Practice, 2020,40(7):1844-1855 [17] Tang L., Yu L., He K. A Novel Data-characteristic-driven Modeling Methodology for Nuclear Energy Consumption Forecasting[J]. Applied Energy, 2014,128(1):1-14 [18] Cleveland R. B., Cleveland W. S., McRae J. E., et al. STL:A Seasonal-trend Decomposition Procedure Based on Loess[J]. Journal of Official Statistics, 1990,6(1):3-73 [19] Zhang W., Qu Z., Zhang K., et al. A Combined Model Based on CEEMDAN and Modified Flower Pollination Algorithm for Wind Speed Forecasting[J]. Energy Conversion and Management, 2017,136(1):439-451 [20] Dickey D. A., Fuller W. A. Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root[J]. Econometrica, 1981, 49(4):1057-1072 [21] Phillips P. C. B. Time Series Regression with a Unit Root[J]. Econometrica, 1987,55(2):277-301 [22] Hart T., Coulson T., Trathan P. N. Time Series Analysis of Biologging Data:Autocorrelation Reveals Periodicity of Diving Behaviour in Macaroni Penguins[J]. Animal Behaviour, 2010,79(4):845-855 [23] Shi K., Liu C., Ai N., et al. Using Three Methods to Investigate Time-scaling Properties in Air Pollution Indexes Time Series[J]. Nonlinear Analysis:Real World Applications, 2008,9(2):693-707 [24] Wang J., Li Y. Multi-step Ahead Wind Speed Prediction Based on Optimal Feature Extraction, Long Short Term Memory Neural Network and Error Correction Strategy[J]. Applied Energy, 2018,230(1):429-443 [25] Yu L., Wang Z., Tang L. A Decomposition-ensemble Model with Data-characteristic-driven Reconstruction for Crude Oil Price Forecasting[J]. Applied Energy, 2015,156(1):251-267 [26] Peng C. K., Buldyrev S. V., Havlin S., et al. Mosaic Organization of DNA Nucleotides[J]. Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1994,49(2):1685 [27] Wang J., Yan J., Li C., et al. Deep Heterogeneous GRU Model for Predictive Analytics in Smart Manufacturing:Application to Tool Wear Prediction[J]. Computers in Industry, 2019,111(1):1-14 [28] Tian X., Liu L., Lai K., et al. Analysis and Forecasting of Port Logistics Using TEI@I methodology[J]. Transportation Planning and Technology, 2013,36(8):685-702 [29] 鲁渤,邢戬,王乾,等. 港口竞争力与腹地经济协同机制面板数据分析[J]. 系统工程理论与实践, 2019,39(4):1079-1090 Lu B., Xing J., Wang Q., et al. Analysis of Cooperation Mechanism between Port Competitiveness and Hinterland by Panel Data[J]. Systems Engineering-Theory & Practice, 2019,39(4):1079-1090 [30] Diebold F. X., Mariano R. S. Comparing Predictive Accuracy[J]. Journal of Business & Economic Statistics, 1995,13(3):253-263 [31] 赵奉军,王先柱. 中国土地交易价格季节性的实证检验[J]. 中国土地科学, 2012,26(6):73-78 Zhao F. J., Wang X. Z. An Empirical Test on the Seasonality in China's Land Market[J]. China Land Sciences, 2012,26(6):73-78 |