[1] 白雪鹏,赵志冲.似然函数视角下小企业信用风险最优评价指标体系的建立[J].运筹与管理, 2023,32(4):155-161 Bai X. P., Zhao Z. C. Optimal Credit Risk Evalution Index System of Small Business from the Perspective of Likelihood Fuction[J]. Operations Research and Management, 2023,32(4):155-161 [2] Zhang Z. P., Chi G. T., Colombage S., et al. Credit Scoring Model Based on a Novel Group Feature Selection Method:The Case of Chinese Small-sized Manufacturing Enterprises[J]. Journal of the Operational Research Society, 2022,73(1):122-138 [3] 冯盼峰,温永仙.基于随机森林算法的两阶段变量选择研究[J].系统科学与数学, 2018,38(1):119-130 Feng P. F., Wen Y. X. Two-stage Stepwise Variable Selection Based on Random Forests[J]. Systems Science and Mathematics, 2018,38(1):119-130 [4] 曹桃云.基于随机森林的变量重要性研究[J].统计与决策, 2022,38(4):60-63 Cao T. Y. Study on the Importance of Variables Based on Random Forest[J]. Statistics and Decision Making, 2022,38(4):60-63 [5] 毕文杰,扶春娟.基于机器学习的Airbnb房源价格预测及影响因素研究——以北京市为例[J].运筹与管理, 2022,31(9):217-224 Bi W. J., Fu C. J. Price Estimation and Determinants Research of Airbnb with Machine Learning:Based on Data from Beijing[J]. Operations Research and Management, 2022,31(9):217-224 [6] Speiser J. L., Miller M. E., Tooze J., et al. A Comparison of Random Forest Variable Selection Methods for Classification Predic-tion Modeling[J]. Expert Systems with Applications, 2019,134:93-101 [7] 迟国泰,章彤,张志鹏.基于非平衡数据处理的上市公司ST预警混合模型[J].管理评论, 2020,32(3):3-20 Chi G. T., Zhang T., Zhang Z. P. Special Treatment Waring Hybrid Model Dealing with Imbalanced Data of Chinese List Compa-nies[J]. Management Review, 2020,32(3):3-20 [8] 赵志冲,严丽霞.多维数据下小企业违约风险过程性评价研究[J].中国管理科学, 2023,31(5):84-92 Zhao Z. C., Yan L. X. Research on Process Evaluation of Default Risk of Small Enterprises under Multidimensional Data[J]. Chi-nese Management Science, 2023,31(5):84-92 [9] Liang D., Tsai C., Lu H. R., et al. Combining Corporate Governance Indicators with Stacking Ensembles for Financial Distress Prediction[J]. Journal of Business Research, 2020,120:137-146 [10] Stevenson M., Mues C., Bravo C. The Value of Text for Small Business Default Prediction:A Deep Learning Approach[J]. Eu- [11] Tsai C., Sue K., Hu Y., et al. Combining Feature Selection, Instance Selection, and Ensemble Classification Techniques for Im-proved Financial Distress Prediction[J]. Journal of Business Research, 2021,130:200-209 [12] 潘明道,周颖,迟国泰,等.基于Fisher判别的小型工业企业债信评级模型及实证[J].管理评论, 2018,30(3):15-28 Pan M. D., Zhou Y., Chi G. T., et al. Small Industrial Enterprises' Credit Rating Model and Empirical Analysis Based on Fisher Discriminant[J]. Management Review, 2018,30(3):15-28 [13] 于善丽,迟国泰,姜欣.基于指标体系违约鉴别能力最大的小企业债信评级体系及实证[J].中国管理科学, 2020,28(6):38-50 Yu S. L., Chi G. T., Jiang X. Small Enterprise Facility Rating on the Maximum Discrimination of Indicator System[J]. Chinese Management Science, 2020,28(6):38-50 [14] 吴辰文,梁靖涵,王伟,等.基于递归特征消除方法的随机森林算法[J].统计与决策, 2017,(21):60-63 Wu C. W., Liang J. H., Wang W., et al. Random Forest Algorithm Based on Recursive Feature Elimination[J]. Statistics and Decision Making, 2017,(21):60-63 [15] Yan X., Jia M. Intelligent Fault Diagnosis of Rotating Machinery Using Improved Multiscale Dispersion Entropy and Mrmr Feature Selection[J]. Knowledge-Based Systems, 2019,163:450-471 [16] Shukla A. K., Singh P., Vardhan M. Gene Selection for Cancer Types Classification Using Novel Hybrid Metaheuristics Approach[J]. Swarm and Evolutionary Computation, 2020,54:100661 [17] Duffie D., Singleton K. J. Modeling Term Structures of Defaultable Bonds[J]. Review of Financial Studies, 1999,12(4):687-720 [18] Altman E. I., Brady B., Resti A., at el. The Link between Default and Recovery Rates:Theory, Empirical Evidence, and Impli-cations[J]. Journal of Business, 2005,78(6):2203-2227 [19] Sun J., Li J., Fujita H. Multi-class Imbalanced Enterprise Credit Evaluation Based on Asymmetric Bagging Combined with Light Gradient Boosting Machine[J]. Applied Soft Computing, 2022,130:109637 [20] Wang L. Imbalanced Credit Risk Prediction Based on SMOTE and Multi-kernel FCM Improved by Particle Swarm Optimization[J]. Applied Soft Computing, 2022,130:108153 [21] Veganzones D., Severin E., Chlibi S. Influence of Earnings Management on Forecasting Corporate Failure[J]. International Jour-nal of Forecasting, 2023,39(1):123-143 [22] Shen F., Zhao X., Kou G., at al. A New Deep Learning Ensemble Credit Risk Evaluation Model with an Improved Synthetic Mi-nority Oversampling Technique[J]. Applied Soft Computing, 2021,98:106852 [23] Elhoseny M., Metawa N., Sztano G., et al. Deep Learning-based Model for Financial Distress Prediction[J]. Annals of Opera-tions Research, 2022,58(5):102673 [24] 陈艺云.基于信息披露文本的上市公司财务困境预测:以中文年报管理层讨论与分析为样本的研究[J].中国管理科学, 2019,27(7):23-34 Chen Y. Y. Forecasting Financial Distress of Listed Companies with Texual Content of the Information Disclosure:A Study Based MD&A in Chinese Annual Reports[J]. Chinese Management Science, 2019,27(7):23-34 [25] 王玉龙,周榴,张涤霏.企业债务违约风险预测——基于机器学习的视角[J].财政科学, 2022,(6):62-74 Wang Y. L., Zhou L., Zhang D. F. Enterprise Debt Default Risk Prediction-Based on the Perspective of Machine Learning[J]. Financial Science, 2022,(6):62-74 [26] Bai Z., Choi K. P., Fujikoshi Y. Consistency of AIC and BIC in Estimating the Number of Significant Components in High-dimensional Principal Component Analysis[J]. Annals of Statistics, 2018,46(3):1050-1076 [27] Ko P., Lin P., Do H., et al. P2P Lending Default Prediction Based on AI and Statistical Models[J]. Entropy, 2022,24(6):801 [28] 董冰洁,迟国泰.基于情感数据的违约判别研究[J].中国管理科学, 2023,31(4):111-120 Dong B. J., Chi G. T. Study on Default Prediction Based on Sentiment Date[J]. Chinese Management Science, 2023,31(4):111-120 [29] 迟国泰,董冰洁.基于借款描述的违约判别研究[J].管理评论, 2022,34(11):261-271 Chi G. T., Dong B. J. Research on Default Prediction Based on Loan Description[J]. Management Review, 2022,34(11):261-271 [30] 迟国泰,董冰洁.基于混合模型的利润驱动违约判别临界点研究[J].运筹与管理, 2022,31(9):196-201 Chi G. T., Dong B. J. Research on Cut-off Point of Profit-driven Default Judgment Based on Mixed Model[J]. Operations Re-search and Management, 2022,31(9):196-201 [31] Ding Y., Song X., Zen Y. Forecasting Financial Condition of Chinese Listed Companies Based on Support Vector Machine[J]. Expert Systems with Applications, 2008,34(4):3081-3089 [32] Du X., Li W., Ruan S., et al. Cus-heterogeneous Ensemble-Based Financial Distress Prediction for Imbalanced Dataset with En-semble Feature Selection[J]. Applied Soft Computing, 2020,97:106758 [33] 林宇,吴庆贺,李昊,等.基于Twin-SVR的公司违约风险预测研究[J].管理评论, 2019,31(11):33-43 Lin Y., Wu Q. H., Li H., et al. Research on Corporate Default Risk Prediction Based on Twin-SVR[J]. Management Review, 2019,31(11):33-43 [34] 王超.深度学习在行业指数技术分析中的应用研究[J].管理评论, 2021,33(3):75-83 Wang C. Study on Application of Deep Learning in Technical Analysis of Sector Indexes[J]. Management Review, 2021,33(3):75-83 [35] Chang Y., Chang K., Wu G. Application of Extreme Gradient Boosting Trees in the Construction of Credit Risk Assessment Mod-els for Financial Institutions[J]. Applied Soft Computing, 2018,73:914-920 ropean Journal of Operational Research, 2021,295(2):758-771 |