[1] Andersen T. G., Bollerslev T. Answering the Critics:Yes, ARCH Models Do Provide Good Volatility Forecasts[J]. International Economic Review, 1998,39(4):885-905
[2] Blair B. J., Poon S. H., Taylor S. J. Forcasting S&P100 Volatility:The Incremental Information Content of Implied Volatility and High Frequency Index Returns[J]. Journal of Econometrics, 2001,45(2):195-213
[3] Martens M., Zein J. Predicting Financial Volatility:High-frequency Time-series Forecasts vis-à-vis Implied Volatility[J]. Journal of Futures Markets, 2004,24(11):1005-1028
[4] Andersen T. G., Torben T., Bollerslev G., et al. Modeling and Forecasting Realized Volatility[J]. Econometrica, 2003,71(2):579-625
[5] Koopman S. J., Jungbacker B., Hol E. Forecasting Daily Variability of the S&P100 Stock Index Using Historical, Realized and Implied Volatility Measurements[J]. Journal of Empirical Finance, 2005,12(3):445-475
[6] 魏宇. 沪深300股指期货的波动率预测模型研究[J]. 管理科学学报, 2010,13(2):66-76
[7] Müller U., Dacorogna M., Dav R., et al. Fractals and Intrinsic Time-a Challenge to Econometricians[C]. XXXIXth International AEA Conference on Real Time Econometrics, Luxembourg, 1993
[8] Corsi F. A Simple Approximate Long-memory Model of Realized-volatility[J]. Journal of Financial Econometrics, 2009,7(2):174-196
[9] Andersen T. G., Bollerslev T., Huang X. A Reduced Form Framework for Modeling Volatility of Speculative Prices Based on Realized Variation Measures[J]. Journal of Econometrics, 2011,160(1):176-189
[10] Wang C. S., Bauwens L., Hsiao C. Forecasting a Long Memory Process Subject to Structural Breaks[J]. Journal of Econometrics, 2013,177(2):171-184
[11] Çelik S., Ergin H. Volatility Forecasting Using High Frequency Data:Evidence from Stock Markets[J]. Economic Modelling, 2014,36:176-190
[12] Andersen T. G., Bollerslev T., Diebold F. X. Roughing It Up:Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility[J]. The Review of Economics and Statistics,2007,89(4):701-720
[13] Barndorff-Nielsen O. E., Shephard N. Power and Bipower Variation With Stochastic Volatility and Jumps[J]. Journal of Financial Econometrics, 2004,2(1):1-37
[14] Barndorff-Nielsen O. E., Shephard N. Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation[J]. Journal of Financial Econometrics, 2006,4(1):1-30
[15] Zhou H., Zhu J. Q. An Empirical Examination of Jump Risk in Asset Pricing and Volatility Forecasting in China's Equity and Bond Markets[J]. Pacific-Basin Finance Journal, 2012,20(5):857-880
[16] Chen X., Ghysels E. News-Good or Bad-and its Impact on Volatility Predictions over Multiple Horizons[J]. Review of Financial Studies, 2011,24(1):46-81
[17] Corsi F., Renò R, Discrete-time Volatility Forecasting with Persistent Leverage Effect and the Link with Continuous-Time Volatility Modeling[J]. Journal of Business and Economic Statistics, 2012,30(3):368-380
[18] 文凤华,刘晓群,唐海如,等. 基于LHAR-RV-V模型的中国股市波动性研究[J]. 管理科学学报, 2012,15(6):59-67
[19] Huang C., Gong X., Chen X., et al. Measuring and Forecasting Volatility in Chinese Stock Market Using HAR-CJ-M Model[J]. Abstract and Applied Analysis, 2013,2013:1-13
[20] Haugom E., Langeland H., Molnár P., et al. Forecasting Volatility of the U.S. Oil Market[J]. Journal of Banking & Finance, 2014,47:1-14
[21] Sévi B. Forecasting the Volatility of Crude Oil Futures Using Intraday Data[J]. European Journal of Operational Research, 2014,235(3):643-659
[22] 简志宏,李彩云. 隔夜风险可以预测吗?——基于HAR-CJ-M模型的高频数据分析[J]. 管理评论, 2014,26(2):3-12
[23] Bansal R., Kiku D., Shaliastovich I, et al. Volatility, the Macroeconomy, and Asset Prices[J]. Journal of Finance, 2014,69(6):2471-2511
[24] 王宜峰,王燕鸣.投资者情绪在资产定价中的作用研究[J]. 管理评论, 2014,26(6):42-55
[25] Seo S. W., Kim J. S. The Information Content of Option-Implied Information for Volatility Forecasting with Investor Sentiment[J]. Journal of Banking & Finance, 2015,50:106-120
[26] 李爱华,杨婧,林则夫. 我国房地产价格与股票价格波动关系的研究[J]. 管理评论, 2014,26(11):12-19
[27] Huang N. E., Shen Z., Long S. R., et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis[C]. Proceedings of the Royal Society of London A:Mathematical, Physical and Engineering Sciences. The Royal Society, 1998,454(1971):903-995
[28] Yu L., Wang S., Lai K. K. Forecasting Crude Oil Price with an EMD-based Neural Network Ensemble Learning Paradigm[J]. Energy Economics, 2008,30(5):2623-2635
[29] Zhang X., Lai K. K., Wang S. A New Approach for Crude Oil Price Analysis Based on Empirical Mode Decomposition[J]. Energy Economies, 2008,30(3):905-918
[30] Zhang X., Yu L., Wang S., et al. Estimating the Impact of Extreme Events on Crude Oil Price:An EMD-based Event Analysis Method[J]. Energy Economics, 2009,31(5):768-778
[31] 孟磊,郭菊娥,郭广涛. 基于延期交割费的我国燃料油期现货价格关系辨析[J]. 管理评论, 2011,23(6):9-15
[32] 汤铃,李建平,孙晓蕾,等. 基于模态分解的国家风险多尺度特征分析[J]. 管理评论, 2012,24(8):3-10
[33] Andersen T. G., Dobrev D., Schaumburg E. Jump-robust Volatility Estimation Using Nearest Neighbor Truncation[J]. Journal of Econometrics, 2012,169(1):75-93
[34] 王春峰,闫芳,房振明,等. 日内高频状态下信息冲击驱动跳跃模式研究[J]. 管理评论, 2014,26(1):41-46
[35] Hansen P. R., Lunde A. A Forecast Comparison of Volatility Models:Does Anything Beat a GARCH (1, 1)[J]. Journal of Applied Econometrics, 2005,20(7):873-889
[36] Patton A. J. Volatility Forecast Comparison Using Imperfect Volatility Proxies[J]. Journal of Econometrics, 2011,160(1):246-256
[37] Hansen P. R. A Test for Superior Predictive Ability[J]. Journal of Business and Economic Statistics, 2005,23(4):365-380
[38] Martin G. M., Reidy R., Wright J. Does the Option Market Produce Superior Forecasts of Noise-corrected Volatility Measures?[J]. Journal of Applied Econometrics, 2009,24(1):77-104
[39] Hung J. C., Lou T. W., Wang Y. H., et al. Evaluating and Improving GARCH-based Volatility Forecasts with Range-based Estimators[J]. Applied Economics, 2013,45(28):4041-4049
[40] White H. A Reality Check for Data Snooping[J]. Econometrica, 2000,68(5):1097-1126 |