[1] 夏利宇,何晓群. 基于半参数方法进行拒绝推断的信用评级模型[J]. 管理评论, 2018,30(10):40-48
[2] Douzas G., Bacao F. Self-Organizing Map Oversampling (SOMO) for Imbalanced Data Set Learning[J]. Expert Systems with Applications, 2017,82:40-52
[3] Chawla N. V., Bowyer K. W., Hall L. O., et al. SMOTE:Synthetic Minority Over-sampling Technique[J]. Journal of Artificial Intelligence Research, 2002,16(1):321-357
[4] Ramentol E., Caballero Y., Bello R., et al. SMOTE-RSB:A Hybrid Preprocessing Approach Based on Oversampling and Undersampling for High Imbalanced Data-sets Using SMOTE and Rough Sets Theory[J]. Knowledge and Information Systems, 2012,33(2):245-265
[5] 薛薇. 非平衡数据集的改进SMOTE再抽样算法[J]. 统计研究, 2012,29(6):95-98
[6] 衣柏衡,朱建军,李杰. 基于改进SMOTE的小额贷款公司客户信用风险非均衡SVM分类[J]. 中国管理科学, 2016,24(3):24-30
[7] 陶新民,徐晶,童稚靖. 不均衡数据下基于阴性免疫的过抽样算法[J]. 控制与决策, 2010,25(6):867-873
[8] Phua C., Alahakoon D., Lee V. Minority Report in Fraud Detection:Classification of Skewed Data[J]. Acm Sigkdd Explorations Newsletter, 2004,6(1):50-59
[9] Hu J., Li Y., Yan W. X., et al. KNN-based Dynamic Query-driven Sample Rescaling Strategy for Class Imbalance Learning[J]. Neurocomputing, 2016,191:363-373
[10] Yen S. J., Lee Y. S. Cluster-based Undersampling Approaches for Imbalanced Data Distributions[J]. Expert Systems with Applications, 2009,36(3):5718-5727
[11] Ofek N., Rokach L., Stern R., et al. Fast-CBUS:A Fast Clustering-based Undersampling Method for Addressing the Class Imbalance Problem[J]. Neurocomputing, 2017,243:88-102
[12] Kubat M., Matwin S. Addressing the Curse of Imbalanced Training Sets:One-Sided Selection[C]. International Conference on Machine Learning, 2012
[13] Elkan C. The Foundations of Cost-Sensitive Learning[C]. Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, 2001
[14] Zhang Y., Fu P. P., Liu W. Z., et al. Imbalanced Data Classification Based on Scaling Kernel-based Support Vector Machine[J]. Neural Computing & Applications, 2014,25(3):927-935
[15] Wang D. F., Yeung D. S. Structured One-class Classification[J]. IEEE Trans on Systems and Cybernetics, 2006,36(6):1283-1295
[16] Sun B., Chen S. C., Wang J. D., et al. A Robust Multi-class AdaBoost Algorithm for Mislabeled Noisy Data[J]. Knowledge-Based Systems, 2016,102(5):87-102
[17] Guo H., Viktor H. L. Learning from Imbalanced Data Sets with Boosting and Data Generation:The DataBoost IM Approach[J]. ACM SIGKDD Explorations Newsletter, 2004,6(1):30-39
[18] Kim M. J., Kang D. K., Hong B. K. Geometric Mean Based Boosting Algorithm with Over-sampling to Resolve Data Imbalance Problem for Bankruptcy Prediction[J]. Expert Systems with Applications, 2015,42(3):1074-1082
[19] 何晓群,夏利宇,姜天英. 处理不平衡征信数据的零膨胀信用评级模型[J]. 数理统计与管理, 2019,38(5):812-822 |