管理评论 ›› 2026, Vol. 38 ›› Issue (1): 249-260.

• 运营与供应链管理 • 上一篇    

数据驱动的基于状态的维修决策研究

蔡悦1, 龚其国1,2   

  1. 1. 中国科学院大学经济与管理学院, 北京 100190;
    2. 中国科学院大学数字经济监测预测预警与政策仿真教育部哲学社会科学实验室(培育), 北京 100190
  • 收稿日期:2023-05-26 发布日期:2026-02-10
  • 作者简介:蔡悦,中国科学院大学经济与管理学院博士研究生;龚其国(通讯作者),中国科学院大学经济与管理学院教授,博士生导师,博士。
  • 基金资助:
    国家自然科学基金项目(72172145;71932002)

Data-driven Condition-based Maintenance Decision-making Research

Cai Yue1, Gong Qiguo1,2   

  1. 1. School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190;
    2. MOE Social Science Laboratory of Digital Economic Forecasts and Policy Simulation at UCAS, Beijing 100190
  • Received:2023-05-26 Published:2026-02-10

摘要: 随着数据的收集和处理技术(机器/深度学习)的快速发展,制造系统故障诊断在过去几年取得了巨大的进展。然而,目前很少有研究将这些系统故障诊断的结果应用于后续的维修决策中。此外,现有的维修优化模型通常假设已知系统故障过程,但这在实际情况中是不成立的。本研究提出了一种针对单元系统的数据驱动维修计划方法。基于由传感器收集的系统状态数据,首先利用长短期记忆网络(LSTM)预测系统在下一个时间单位内发生故障的概率,然后将估计的概率应用于经过调整以适应数据驱动情况的维修优化模型中,以确定系统故障概率达到一定水平时需要进行预防性维修活动的阈值。通过两个发动机引擎的数据验证了所提出的数据驱动维修决策方法的有效性。与经典的周期性维修决策相比,该新方法显著降低了系统的平均维修成本。

关键词: 数据驱动, 深度学习, 故障诊断, 基于状态的维修, 发动机引擎

Abstract: With the rapid development of data collection and processing technologies, particularly in the field of machine/deep learning, significant progress has been made in manufacturing system failure diagnosis in recent years. However, there is currently limited research that integrates these failure diagnoses of the system into subsequent maintenance decision-making. On the other hand, existing maintenance optimization models often assume known system failure processes, which is not realistic in practical scenarios. In this study, we propose a data-driven maintenance planning approach for a single-unit system. Based on the system's condition information, we first employ a Long Short-Term Memory(LSTM) network to predict the probability of the system's failure in the next time period. Subsequently, we apply the estimated probabilities to a modified maintenance optimization model adapted for data-driven scenarios to determine the threshold at which preventive maintenance activities should be initiated when the system failure probability reaches a certain level. We validate the effectiveness of the proposed data-driven maintenance decision-making method using two turbo engine datasets. Compared to the classical periodic maintenance decision-making approach, this novel method significantly reduces the average maintenance costs of the system.

Key words: data-driven, deep learning, failure diagnosis, condition-based maintenance, turbo engine