管理评论 ›› 2025, Vol. 37 ›› Issue (2): 111-123.

• 创新与创业管理 • 上一篇    

二代特征与家族企业创新——基于机器学习的经验证据

李园园1, 柯迪2, 曾紫韬1, 李小玉2   

  1. 1. 山西财经大学工商管理学院, 太原 030006;
    2. 中国民航大学经济与管理学院, 天津 300300
  • 收稿日期:2022-05-09 发布日期:2025-03-06
  • 作者简介:李园园,山西财经大学工商管理学院副教授,硕士生导师,博士;柯迪(通讯作者),中国民航大学经济与管理学院讲师,硕士生导师,博士;曾紫韬,山西财经大学工商管理学院硕士研究生;李小玉,中国民航大学经济与管理学院讲师,硕士生导师,博士。
  • 基金资助:
    国家社会科学基金青年项目(24CJL017);国家社会科学基金一般项目(24BJY037)。

Second-generation Characteristics and Family Business Innovation:Empirical Evidence Based on Machine Learning

Li Yuanyuan1, Ke Di2, Zeng Zitao1, Li Xiaoyu2   

  1. 1. School of Business Administration, Shanxi University of Finance and Economics, Taiyuan 030006;
    2. School of Economics and Management, Civil Aviation University of China, Tianjin 300300
  • Received:2022-05-09 Published:2025-03-06

摘要: 关于二代特征与家族企业创新的研究,一方面受限于研究方法,既有文献多聚焦于单一或少数几个二代特征变量之间的交互效应,尚未对二代特征的多维度变量进行系统且全面的剖析;另一方面,主要从解释性视角进行因果关系的推断研究,缺乏预测性视角的系统定量分析。本文基于预测性视角,运用机器学习的方法,以2369家中国家族上市企业的数据为研究样本,全面考察了多维度二代特征对家族企业创新水平的预测性,进一步探寻了对家族企业创新水平预测能力较强的关键二代特征因素,并刻画了其预测机制。研究发现:①在二代个人特征中,二代涉入时长对研发投入的预测能力较强,而二代年龄对研发产出的预测能力较强;②在继任方式中,二代持股比例对家族企业创新水平的预测能力较强;③二代持股比例、二代年龄及二代涉入时长与家族企业创新水平之间的关联都呈现非线性的特点。研究结论对家族企业如何通过“承者”促进家族企业创新能力提升具有重要参考价值。

关键词: 代际传承, 二代特征, 继任方式, 家族企业创新, 机器学习

Abstract: Research on the impact of second-generation characteristics on family business innovation is limited by several factors. First, existing studies often focus on the interaction effects of a single or a few second-generation characteristic variables due to methodological constraints, lacking a systematic and comprehensive analysis of multidimensional second-generation variables. Second, most research employs an explanatory perspective to infer causal relationships, while giving limited attention to systematic quantitative analyses from a predictive perspective. This study, adopting a predictive approach and employing machine learning methods, uses data from 2,369 publicly listed Chinese family firms to comprehensively examine the predictive impact of multidimensional second-generation characteristics on family business innovation. It further identifies the key second-generation characteristic factors that significantly influence the prediction of family business innovation levels and elucidates their predictive mechanisms. The findings indicate that: (1) among personal characteristics, the duration of second-generation involvement is a strong predictor of R&D investment, while second-generation age is a stronger predictor of R&D output; (2) in terms of succession methods, the second-generation’s shareholding ratio is a strong predictor of family business innovation levels; (3) the relationships between the second-generation shareholding ratio, age, involvement duration, and family business innovation levels exhibit non-linear characteristics. The conclusions of this study provide valuable insights for family businesses during the intergenerational succession period on how to enhance innovation capabilities through the role of the “successor”.

Key words: intergenerational succession, second-generation characteristics, succession methods, family business innovation, machine learning