[1] 史丹,聂新伟,齐飞. 数字经济全球化:技术竞争、规则博弈与中国选择[J]. 管理世界, 2023,39(9):1-15 Shi D., Nie X. W., Qi F. Globalization of Digital Economy: Technological Competition, Rule Game and China’s Choice[J]. Journal of Management World, 2023,39(9):1-15 [2] 杨刚强,王海森,范恒山,等. 数字经济的碳减排效应:理论分析与经验证据[J]. 中国工业经济, 2023,(5):80-98 Yang G. Q., Wang H. S., Fan H. S., et al. Carbon Reduction Effect of Digital Economy: Theoretical Analysis and Empirical Evidence[J]. China Industrial Economics, 2023,(5):80-98 [3] Song W., Han X. The Bilateral Effects of Foreign Direct Investment on Green Innovation Efficiency: Evidence from 30 Chinese Provinces[J]. Energy, 2022,261:125332 [4] Chen Z., Zhang Y., Wang H., et al. Can Green Credit Policy Promote Low-carbon Technology Innovation?[J]. Journal of Cleaner Production, 2022,359:132061 [5] Liu J., Chang H. H., Jeffrey Y. L. F., et al. Influence of Artificial Intelligence on Technological Innovation: Evidence from the Panel Data of China’s Manufacturing Sectors[J]. Technological Forecasting & Social Change, 2020,158:120142 [6] You J., Zhang W. How Heterogeneous Technological Progress Promotes Industrial Structure Upgrading and Industrial Carbon Efficiency? Evidence from China’s Industries[J]. Energy, 2022,247:123386 [7] Dong X., Chen Y., Zhuang Q., et al. Agglomeration of Productive Services, Industrial Structure Upgrading and Green Total Factor Productivity: An Empirical Analysis Based on 68 Prefectural-level-and-above Cities in the Yellow River Basin of China[J]. International Journal of Environmental Research and Public Health, 2022,19(18):11643 [8] Ma T., Cao X. Spatial Econometric Study on the Impact of Industrial Upgrading on Green Total Factor Productivity[J]. Mathematical Problems in Engineering, 2022:1133340 [9] 吕越,马明会,陈泳昌,等. 人工智能赋能绿色发展[J]. 中国人口·资源与环境, 2023,33(10):100-111 Lv Y., Ma M. H., Chen Y. C., et al. Artificial Intelligence and Green Development[J]. China Population, Resources and Environment, 2023,33(10):100-111 [10] 赵培雅,高煜,孙雪. “双控”目标下产业智能化的节能降碳减排效应[J]. 中国人口·资源与环境, 2023,33(9):59-69 Zhao P. Y., Gao Y., Sun X. Energy-saving, Carbon Emissions-reducing, and Industrial Pollution Emissionsreducing Rffects of Industrial Intelligence under the ‘Dual Control’ System[J]. China Population, Resources and Environment, 2023,33(9):59-69 [11] 曹雅茹,刘军,邵军. 替代还是创造:智能化如何影响中国制造业就业?[J]. 管理评论, 2023,35(9):37-49 Cao Y. R., Liu J., Shao J. Substitution or Creation: How lntelligentization Affects China’s Manufacturing Employment?[J]. Management Review, 2023,35(9):37-49 [12] Qian Y., Liu J., Shi L., et al. Can Artificial Intelligence Improve Green Economic Growth? Evidence from China[J]. Environmental Science and Pollution Research, 2023,30(6):16418-16437 [13] 许宪春,任雪,常子豪. 大数据与绿色发展[J]. 中国工业经济, 2019,(4):5-22 Xu X. C., Ren X., Chang Z. H. Big Data and Green Development[J]. China Industrial Economics, 2019,(4):5-22 [14] Vinuesa R., Azizpour H., Leite I., et al. The Role of Artificial Intelligence in Achieving the Sustainable Development Goals[J]. Nature Communications, 2020,11(1):1-10 [15] Kopka A., Grashof N. Artificial Intelligence: Catalyst or Barrier on the Path to Sustainability?[J]. Technological Forecasting and Social Change, 2022,175:121318 [16] Liu Y., Yang Y., Li H., et al. Digital Economy Development, Industrial Structure Upgrading and Green Total Factor Productivity: Empirical Evidence from China’s Cities[J]. International Journal of Environmental Research and Public Health, 2022,19(4):2414 [17] Zhu X., Zhang B., Yuan H. Digital Economy, Industrial Structure Upgrading and Green Total Factor Productivity—Evidence in Textile and Apparel Industry from China[J]. Plos One, 2022,17(11):e0277259 [18] 汪立鑫,孟彩霞. 创新能力、劳动力成本与地区制造业智能化转型[J]. 科学学研究, 2023,41(8):1376-1388 Wang L. X., Meng C. X. lnnovation Capacity, Labor Cost and Intelligent Transformation of Regional Manufacturing Industry[J]. Studies in Science of Science, 2023,41(8):1376-1388 [19] 占华,后梦婷,檀菲菲. 智能化发展对中国企业绿色创新的影响——基于新能源产业上市公司的证据[J]. 资源科学, 2022,44(5):984-993 Zhan H., Hou M. T., Tan F. F. Influence of Intelligentization on Enterprise Green Innovation: Evidence from Listed Companies of New Energy Industry in China[J]. Resource Science, 2022,44(5):984-993 [20] 孙早,侯玉琳. 工业智能化如何重塑劳动力就业结构[J]. 中国工业经济, 2019,(5):61-79 Sun Z., Hou Y. L. How does Industrial Intelligence Reshape the Employment Structure of Chinese Labor Force[J]. China Industrial Economics, 2019,(5):61-79 [21] 李健旋. 中国制造业智能化程度评价及其影响因素研究[J]. 中国软科学, 2020,(1):154-163 Li J. X. Research on Evaluation Benchmark and Influencing Factors for China’s Manufacturing Intelligentization[J]. China Soft Science, 2020,(1):154-163 [22] 孟凡生,崔静文. 制造业智能化的空间分布、区域差异与收敛性[J]. 科学学研究, 2022,40(5):808-817 Meng F. S., Cui J. W. Spatial Distribution, Regional Differences and Convergence of Manufacturing Intelligentizatior[J]. Studies in Science of Science, 2022,40(5):808-817 [23] Venturini F. Intelligent Technologies and Productivity Spillovers: Evidence from the Fourth Industrial Revolution[J]. Journal of Economic Behavior & Organization, 2022,194:220-243 [24] 侯建,刘青. 数字经济时代下智能化、科技人力资源与产业转型升级[J]. 研究与发展管理, 2022,34(5):123-135 Hou J., Liu Q. Intelligence, Scientific-technological Human Resources, and Industrial Transformation and Upgrading in the Era of Digital Economy[J]. R&D Management, 2022,34(5):123-135 [25] Hansen B. E. Sample Splitting and Threshold Estimation[J]. Econometrica, 2000,68(3):575-603 [26] Yu X., Wang P. Economic Effects Analysis of Environmental Regulation Policy in the Process of Industrial Structure Upgrading: Evidence from Chinese Provincial Panel Data[J]. Science of the Total Environment, 2021,753:142004 [27] Furman J., Seamans R. AI and the Economy[J]. Innovation Policy and the Economy, 2019,19(1):161-191 [28] 韩先锋. 中国对外直接投资逆向创新的价值链外溢效应[J]. 科学学研究, 2019,37(3):556-567 Han X. F. Value Chain Spillover Effects of China OFDI’s Reverse Innovation[J]. Studies in Science of Science, 2019,37(3):556-567 [29] 毕克新,付珊娜,杨朝均,等. 制造业产业升级与低碳技术突破性创新互动关系研究[J]. 中国软科学, 2017,(12):141-153 Bi K. X., Fu S. N., Yang C. J., et al. Research on Interactive Relationship between Industrial Upgrading of Manufacturing Sector and Low-carbon Technology Breakthrough Innovation[J]. China Soft Science, 2017,(12):141-153 |