管理评论 ›› 2024, Vol. 36 ›› Issue (5): 12-24.

• 经济与金融管理 • 上一篇    

基于平均准确度和贝叶斯准则指标遴选的企业违约预测研究——以中国上市小企业为例

董冰洁, 周颖, 李继哲, 王珊珊   

  1. 大连理工大学经济管理学院, 大连 116024
  • 收稿日期:2022-07-01 发布日期:2024-06-06
  • 通讯作者: 董冰洁(通讯作者),大连理工大学经济管理学院博士研究生。
  • 作者简介:周颖,大连理工大学经济管理学院教授,博士生导师,博士;李继哲,大连理工大学经济管理学院本科生;王珊珊,大连理工大学经济管理学院博士研究生。
  • 基金资助:
    国家自然科学基金项目(72071026;71731003;72173096;71971051;71971034;71873103);国家自然科学基金青年项目(71901055;71903019);国家自然科学基金地区项目(72161033);国家社会科学基金重大项目(18ZDA095)。

An Enterprise Default Prediction Model Based on the Indicators Selected by Average Accuracy and Bayesian Information Criterion-Taking China's Small Listed Companies as an Example

Dong Bingjie, Zhou Ying, Li Jizhe, Wang Shanshan   

  1. School of Economics and Management, Dalian University of Technology, Dalian 116024
  • Received:2022-07-01 Published:2024-06-06

摘要: 研究上市小企业违约风险对缓解小企业融资难、融资贵难题以及促进经济平稳发展具有重要意义。本研究基于大数据视角从上市小企业财务指标、非财务指标和宏观经济指标等300多个指标中遴选出一组最优指标组合,并用这个最优指标组合建立中国上市小企业违约预测模型。本文的创新和特色:以指标Xi的基尼系数最小作为划分违约上市小企业和非违约上市小企业的节点。以一个指标组合构造一棵决策树,从m个指标中采用随机抽样的方法得到多个指标组合,并用这多个指标组合构建多棵决策树。计算任意打乱指标Xi的取值前后多棵决策树的违约预测误差值的差值均值,作为指标的重要性值VI(Xi),并保留重要性较大的指标。以保留的指标和上市小企业违约状态构造贝叶斯准则值,以每次增加一个指标和减少一个指标的方法,遴选贝叶斯准则值最小时的指标组合作为最优指标组合。研究表明:(1)本研究遴选的指标能预测上市小企业违约状态。(2)多数据集对比分析、多指标遴选对比分析和多模型对比分析结果表明,本文指标遴选方法优于蓝本文献和其他3种典型的指标遴选方法。(3)不同地理区域的上市小企业信用资质最高的是东部地区。不同上市途径的上市小企业信用资质最高的是非借壳上市小企业。

关键词: 平均准确度, 企业违约, 违约预测, 指标遴选

Abstract: Predicting potential default of small listed companies (small listcos for short) is of great significance for banks to issue loans, for investors to make an informed decision and for regulatory authorities to supervise the market. Based on the big data perspective, this paper selects a set of indicators from more than 300 indicators including small listcos' financial and non-financial indicators and macro-economic indicators, and uses the set of indicators to establish a default prediction model for China's small listcos. The contributions of this paper are as follows:in the first stage, the minimum value of Gini of the indicator Xi is used as the node to divide the small listcos into defaulting ones and non-defaulting ones; a set of features is used to construct a decision tree and then multiple sets of indicators are used to construct multiple decision trees, which are used to calculate the importance value VI (Xi), with indicators of high importance value retained; a set of indicators with the minimum Bayesian criterion value are selected from the retained indicators. The research shows that:(1) The indicators selected in this study can predict the default status of small listcos and conform to the principle of credit 5C. The indicator that has a key impact on the default status of small listcos in the next 0-5 years is “retained earnings per share”; the indicator that has a key impact on the short-term default forecast of small listcos is “other receivables”; an indicator that has a key im-pact on default forecasts is the “Industry Sentiment Index”; (2) the comparative analysis of multiple data sets, the comparative analysis of multi-index selection and the comparative analysis of multiple models show that the index selection method in this paper is significantly better than other three typical methods, and the results are robust; (3) small listcos in the eastern region have the highest credit qualifi-cation compared with those in other geographical regions, and non-backdoor-listed small listcos have the highest credit qualification com-pared with those listed in other ways.

Key words: average accuracy, small listcos, default prediction, indicator selection