[1] Santos M. L. B. The “So-called” UGC: An Updated Definition of User-generated Content in the Age of Social Media[J]. Online Information Review, 2022,46(1):95-113 [2] Zhang Y., Gao J., Cole S., et al. How the Spread of User-generated Contents (UGC) Shapes International Tourism Distribution: Using Agent-based Modeling to Inform Strategic UGC Marketing[J]. Journal of Travel Research, 2021,60(7):1469-1491 [3] Ho-Dac N. N. The Value of Online User Generated Content in Product Development[J]. Journal of Business Research, 2020,112:136-146 [4] 刘婷艳,王晰巍,贾若男,等. 视频网站用户生成内容国内外发展动态及发展趋势[J]. 情报科学, 2020,38(10):133-140 Liu T. Y., Wang X. W., Jia R. N., et al. The Development Trend of User-generated Content on Video Websites at Home and Abroad[J]. Information Science, 2020,38(10):133-140 [5] 李建飞,蒙胜军. 全媒体时代的中国形象跨文化传播——以短视频输出为例[J]. 人民论坛·学术前沿, 2021,(24):118-120 Li J. F., Meng S. J. The Cross-cultural Communication of Chinese Image in the All-media Era-taking Short Video Output as an Example[J]. Renming Luntan·Xueshu Qianyan, 2021,(24):118-120 [6] Cheung M. L., Leung W. K. S., Cheah J. H., et al. Exploring the Effectiveness of Emotional and Rational User-generated Contents in Digital Tourism Platforms[J]. Journal of Vacation Marketing, 2022,28(2):152-170 [7] 牛盼强. 我国新媒体科技传播效果评价研究——以科技类微信公众号为例[J]. 当代传播, 2020,(1):48-51 Niu P. Q. Research on the Effectiveness of New Media Technology Communication in China: Taking Science and Technology WeChat Official Accounts as an Example[J]. Contemporary Communication, 2020,(1):48-51 [8] Assaker G. Age and Gender Differences in Online Travel Reviews and User-generated-content (UGC) Adoption: Extending the Technology Acceptance Model (TAM) with Credibility Theory[J]. Journal of Hospitality Marketing & Management, 2020,29(4):428-449 [9] Tu Z., Wang Y., Birkbeck N., et al. UGC-VQA: Benchmarking Blind Video Quality Assessment for User Generated Content[J]. IEEE Transactions on Image Processing, 2021,30:4449-4464 [10] 魏萌,张博. 新浪微博“网红”的微博内容特征及传播效果研究[J]. 情报科学, 2018,36(2):88-94 Wei M., Zhang B. Exploring Content Characteristics Influencing Popularity of Celebrities Microblogs on Sina Weibo[J]. Information Science, 2018,36(2):88-94 [11] 张海涛,张鑫蕊,周红磊,等. 融合用户偏好与内容特征的短视频传播效果评价研究[J]. 图书情报工作, 2020,64(16):81-91 Zhang H. T., Zhang X. R., Zhou H. L., et al. Research on the Evaluation of Short Video Communication Effect Based on User Preference and Content Characteristics[J]. Library and Information Service, 2020,64(16):81-91 [12] 王微,王晰巍,娄正卿,等. 信息生态视角下移动短视频UGC网络舆情传播行为影响因素研究[J]. 情报理论与实践, 2020,43(3):24-30 Wang W., Wang X. W., Lou Z. Q., et al. Research on the Influencing Factors of Network Public Opinion Dissemination Behavior in User-generated Content of Mobile Video Clips from the Perspective of Information Ecology[J]. Information Studies: Theory & Application, 2020,43(3):24-30 [13] 刘燕南,张雪静. 内容力、传播力、互动力——电视节目跨屏传播效果评估体系创新研究[J]. 现代传播(中国传媒大学学报), 2019,41(3):15-21 Liu Y. N., Zhang X. J. Content Power, Communication Power, Interaction Power: An Innovative Study on the Cross-screen Communication Effect Evaluation System of TV Programs[J]. Modern Communication (Journal of Communication University of China), 2019,41(3):15-21 [14] 聂勇浩,陈函. 内容为王:档案馆官方微信传播效果的影响因素研究[J]. 档案学研究, 2019,171(6):53-59 Nie Y. H., Chen H. Content Dominates: The Factors Affecting the Communication Effects of Archives WeChat Official Accounts[J]. Archives Science Study, 2019,171(6):53-59 [15] Ukpabi D. C., Karjaluoto H. What Drives Travelers’ Adoption of User-generated Content? A Literature Review[J]. Tourism Management Perspectives, 2018,28:251-273 [16] Kaur W., Balakrishnan V., Rana O., et al. Liking, Sharing, Commenting and Reacting on Facebook: User Behaviors’ Impact on Sentiment Intensity[J]. Telematics and Informatics, 2019,(39):25-36 [17] Krebs I., Lischka J. A. Is Audience Engagement Worth the Buzz? The Value of Audience Engagement, Comment Reading, and Content for Online News Brands[J]. Journalism, 2019,20(6):714-732 [18] 刘果,汪小伢. 标题特征对数字媒介内容传播效果的影响——基于新闻评论类微信公众号标题的实证研究[J]. 新闻与传播评论, 2020,73(6):29-39 Liu G., Wang X. Y. The Influence of Title Features on the Effect of Digital Media Content Communication—Based on an Empirical Study of WeChat Official Accounts Title in News Commentary[J]. Journalism and Communication Review, 2020,73(6):29-39 [19] 王林,朱文静,潘陈益,等. 基于p指数的微博传播力评价方法及效果探究——以我国34省、直辖市旅游政务官方微博为例[J]. 情报科学, 2018,36(4):38-44 Wang L., Zhu W. J., Pan C. Y., et al. Research on the Method and Effect of Microblog Propagation Capability Evaluation Based on P-index[J]. Information Science, 2018,36(4):38-44 [20] 王丽苗,许青林,姜文超,等. 集成FM的短视频喜好率预测模型[J]. 计算机工程与应用, 2020,56(14):118-122 Wang L. M., Xu Q. L., Jiang W. C., et al. Short Video Preference Rate Prediction Model with Integrated FM[J]. Computer Engineering and Applications, 2020,56(14):118-122 [21] 井佩光,叶徐清,刘昱,等. 基于双向深度编码网络的短视频流行度预测[J]. 激光与光电子学进展, 2022,59(8):300-308 Jing P. G., Ye X. Q., Liu Y., et al. T. Micro-video Popularity Prediction with Bidirectional Deep Encoding Network[J]. Laser & Optoelectronics Progress, 2022,59(8):300-308 [22] 祁凯,韦晓玉,郑瑞. 基于系统动力学模型的政务短视频网络舆情动力演化分析[J]. 情报理论与实践, 2021,44(3):115-121 Qi K., Wei X. Y., Zheng R. Dynamic Evolution Analysis of Government Short Video Network Public Opinion Based on SD Model[J]. Information Studies: Theory & Application, 2021,44(3):115-121 [23] Qu Q., Wang L., Zhang L., et al. Modeling and Simulation for the Impact of EGC Strategies on the Negative UGC Diffusion[J]. Telematics and Informatics, 2019,45:101277 [24] 梁小珍,张晴,杨明歌. 面向网络搜索数据的航空客运需求两阶段分解集成预测模型[J]. 管理评论, 2021,33(5):236-245 Liang X. Z., Zhang Q., Yang M. G. A Two-stage Decomposition Ensemble Model with Internet Search Data for Air Passenger Demand Forecasting[J]. Management Review, 2021,33(5):236-245 [25] 徐菲,任爽. 基于分解—集成的铁路货运需求预测研究[J]. 运筹与管理, 2021,30(8):133-138 Xu F., Ren S. Railway Freight Demand Forecasting Based on Decompose-Ensemble Method[J]. Operations Research and Management Science, 2021,30(8):133-138 [26] 陈凯杰,唐振鹏,吴俊传,等. 基于分解-集成和混频数据采样的中国股票市场预测研究[J]. 系统工程理论与实践, 2022,42(11):3105-3120 Chen K. J., Tang Z. P., Wu J. C., et al. Forecasting China’s Stock Index: A Hybrid Method Based on Decomposition-Integrated and Mixed-frequency Data[J]. Systems Engineering-Theory & Practice, 2022,42(11):3105-3120 [27] 范丽伟,董欢欢,渐令. 基于滚动时间窗的碳市场价格分解集成预测研究[J]. 中国管理科学, 2023,31(1):277-286 Fan L. W., Dong H. H., Jian L. A Decomposition Ensemble Model with Sliding Time Window for Forecasting Carbon Market Prices[J]. Chinese Journal of Management Science, 2023,31(1):277-286 [28] 齐惠颖,江雨荷. 基于多组学数据融合构建乳腺癌生存预测模型[J]. 数据分析与知识发现, 2019,3(8):88-93 Qi H. Y., Jiang Y. H. Predicting Breast Cancer Survival Length with Multi-omics Data Fusion[J]. Data Analysis and Knowledge Discovery, 2019,3(8):88-93 [29] 崔明明,刘晓亭,李秀婷,等. 数据特征驱动的房地产市场集成预测研究[J]. 管理评论, 2020,32(7):89-101 Cui M. M., Liu X. T., Li X. T., et al. Integrated Data Characteristic Driven Forecasting Research on Real Estate Market[J]. Management Review, 2020,32(7):89-101 [30] 曾能民,张明,余乐安. 基于“拆分-填充-分解-集成”的我国线上零售额预测研究[J]. 中国管理科学, 2022,30(12):63-76 Zeng N. M., Zhang M., Yu L. A. Forecasting Online Retail Sales of China Based on Splitting-Filling-Decomposition-Ensemble Model[J]. Chinese Journal of Management Science, 2022,30(12):63-76 [31] Chai H., Zhou X., Zhang Z., et al. Integrating Multi-omics Data through Deep Learning for Accurate Cancer Prognosis Prediction[J]. Computers in Biology and Medicine, 2021,134:104481 [32] Shafiei S., Mihǎitǎ A. S., Nguyen H., et al. Integrating Data-driven and Simulation Models to Predict Traffic State Affected by Road Incidents[J]. Transportation Letters, 2022,14(6):629-639 [33] 马丽. 基于5W模式的公共图书馆古籍数字文创产品开发策略[J]. 图书馆工作与研究, 2023,(7):33-39 Ma L. Strategies of Digital Cultural Creative Products Development of Ancient Books in Public Libraries Based on the 5W Model[J]. Library Work and Study, 2023,(7):33-39 [34] 韩云惠. APP在档案利用服务中的应用图景展望——基于拉斯韦尔的5W模式分析[J]. 档案学研究, 2017,(4):78-82 Han Y. H. The Prospect of Application of APP in Archives Utilization Service Analysis Based on 5W Model of Lasswell[J]. Archives Science Study, 2017,(4):78-82 [35] 陈雅梅,翟雅楠. 基于5W传播理论的公共图书馆群组阅读推广服务模式研究[J]. 图书馆工作与研究, 2018,(1):106-110 Chen Y. M., Zhai Y. N. Research on Service Mode of Group Reading Promotion in Public Library Based on 5W Communication Theory[J]. Library Work and Study, 2018,(1):106-110 [36] 李文强,刘颖. 基于灰色关联分析与PLS-LSSVM的航材备件需求预测模型[J]. 数学的实践与认识, 2021,51(7):54-60 Li W. Q., Liu Y. The Prediction Model of Airlines Spare Parts Based on Grey-relational Analysis and PLS-LSSVM[J]. Mathematics in Practice and Theory, 2021,51(7):54-60 [37] 王磊,刘雨,刘志中,等. 处理不平衡数据的聚类欠采样加权随机森林算法[J]. 计算机应用研究, 2021,38(5):1398-1402 Wang L., Liu Y., Liu Z. Z., et al. Clustering Under-sampling Weighted Random Forest Algorithm for Processing Unbalanced Data[J]. Application Research of Computers, 2021,38(5):1398-1402 [38] 马晓君,董碧滢,王常欣. 一种基于PSO优化加权随机森林算法的上市公司信用评级模型设计[J]. 数量经济技术经济研究, 2019,36(12):165-182 Ma X. J., Dong B. Y., Wang C. X. Design of a Credit Rating Model of Quoted Companies Based on the PSO Optimized Weighted Random Forest Algorithm[J]. Journal of Quantitative & Technological Economics, 2019,36(12):165-182 |