管理评论 ›› 2024, Vol. 36 ›› Issue (1): 251-263.

• 公共管理 • 上一篇    下一篇

“好差评”制度提高在线政务服务效能了吗?——基于自然实验和断点回归的实证检验

王天梅1, 赵钰宁1, 于鹏2, 朱艳春3   

  1. 1. 中央财经大学信息学院, 北京 102200;
    2. 中央财经大学政府管理学院, 北京 100081;
    3. 北京师范大学经济与工商管理学院, 北京 100875
  • 收稿日期:2022-01-25 出版日期:2024-01-28 发布日期:2024-03-06
  • 通讯作者: 王天梅(通讯作者),中央财经大学信息学院教授,博士生导师。
  • 作者简介:赵钰宁,中央财经大学信息学院硕士研究生;于鹏,中央财经大学政府管理学院教授,博士;朱艳春,北京师范大学经济与工商管理学院副教授,博士。
  • 基金资助:
    国家重点研发计划(2021YFF0900800);国家自然科学基金面上项目(72072194);北京社会科学基金研究基地一般项目(18JDGLB020)。

Did the Government Service Rating System Improve the Effectiveness of Online Government Services?—Empirical Tests Based on a Natural Experiment Using Regression Discontinuity Design

Wang Tianmei1, Zhao Yuning1, Yu Peng2, Zhu Yanchun3   

  1. 1. School of Information, Central University of Finance and Economics, Beijing 102200;
    2. School of Government, Central University of Finance and Economics, Beijing 100081;
    3. Business School, Beijing Normal University, Beijing 100875
  • Received:2022-01-25 Online:2024-01-28 Published:2024-03-06

摘要: 政务服务“好差评”制度是党的十八大以来备受关注、被寄予厚望的重要改革措施之一,其政策效果和优化方向也受到了学术界的广泛关注。地方领导留言板是网上干群互动平台,作为在线政务服务的缩影,于2019年6月开通满意度评价功能,可以作为“好差评”制度政策效果的自然实验研究场景。本文利用平台开通满意度评价功能的外生性,采用深度机器学习方法分析了2.7万余条干群互动文本特征,测量在线政务服务效能及相关研究变量,使用断点回归模型估计了网民满意度评价对在线政务服务效能的影响作用。研究结果与预期相同,网民满意度评价对提高政府在线服务效能起到决定性作用,但是不同地方政府在线政务服务效能提升的程度及显著性有一定差异,论文进一步分析了可能原因。采用不同估计方法、模型设定、带宽选择,研究结果均有很强的稳健性。研究结论有助于深化对“好差评”制度的认识,也有助于理解这一制度实施过程中需要优化的关键问题。

关键词: 在线政务服务效能, "好差评"制度, 公众满意度

Abstract: Implementing the "Good/Poor Rating System" for government services is one of the reform measures that have received great attention and expectation since the 18th National Congress of the Communist Party of China. The policy effect of this reform and its optimization direction has gained extensive attention from academia. The Message Board for Leaders on People's Daily is an online political deliberation platform. As the epitome of online government services, the Message Board for Leaders added the satisfaction rating function in June 2019, which became the natural intervention of the "Good/Poor" rating system. Using the exogeneity of the satisfaction rating function, this paper applies deep learning methods to analyze the textual features of more than 27,000 netizens' posts and government responses and measures the effectiveness of online government service and related variables. This paper estimates the impact of netizens' satisfaction ratings on the effectiveness of online government service with regression discontinuity design. As expected, the netizens' satisfaction ratings play a decisive role in improving the effectiveness of government online services. Also, the positive impacts vary in degree and statistical significance among different local governments. The results remain robust with different estimation methods, model settings, and bandwidth selections. The conclusion of this study deepens the understanding of the "Good/Poor Rating System" and sheds light on the key issues that should be optimized.

Key words: the effectiveness of online government services, "good/poor rating system", public satisfaction