[1] Yan Y., Reed M. Price Discovery in the Chinese Corn Futures Market, with Comparisons to Soybean Futures[J]. Agribusiness, 2014,30(4):398-409 [2] Gupta S., Choudhary H., Agarwal D. R. An Empirical Analysis of Market Efficiency and Price Discovery in Indian Commodity Market[J]. Global Business Review, 2018,19(3):771-789 [3] 杨晨辉,刘新梅,魏振祥,等. 基于VAR模型的我国期货市场定价效率的实证研究[J]. 数理统计与管理, 2011,30(2):330-338 [4] 孟娜,许保光. 基于VAR模型的我国生猪饲料价格影响因素研究[J]. 数理统计与管理, 2011,30(5):761-769 [5] Rezitis, Anthony N. The Relationship between Agricultural Commodity Prices, Crude Oil Prices and US Dollar Exchange Rates:A Panel VAR Approach and Causality Analysis[J]. International Review of Applied Economics, 2015,29(3):403-434 [6] 张利庠,张喜才. 外部冲击对我国农产品价格波动的影响研究——基于农业产业链视角[J]. 管理世界, 2011,27(1):71-81 [7] Vo D. H., Vu T. N., Vo, A. T., et al. Modeling the Relationship between Crude Oil and Agricultural Commodity Prices[J]. Energies, 2019,12(7):1-44 [8] 王琴英,张燕萍. 主成分分析法分析我国玉米期货价格影响因素[J]. 发展改革理论与实践, 2017,18(1):42-47 [9] De Gorter H., Drabik D., Just D. R. Biofuel Policies and Food Grain Commodity Prices 2006-2012:All Boom and No Bust?[C]. Agbioforum, 2013 [10] Papie, Monika. A Dynamic Analysis of Causality between Prices of Corn, Crude Oil and Ethanol[J]. MPRA Paper, 2014,77(5):463-470 [11] Kumar B., Pandey A. Market Efficiency in Indian Commodity Futures Markets[J]. Journal of Indian Business Research, 2017,5(2):101-121 [12] Wang J., Li X. A Combined Neural Network Model for Commodity Price Forecasting with SSA[J]. Soft Computing, 2018,22(16):5323-5333 [13] 吴海霞,葛岩,史恒通. 玉米金融化、价格形成机制及政策选择[J]. 管理评论, 2018,30(11):35-45 [14] Sayed A., Auret C. Volatility Transmission in Maize Futures Markets of Major Exporters[J]. Investment Analysts Journal, 2019,48(3):173-187 [15] Melichar M., Atems B. Global Crude Oil Market Shocks and Global Commodity Prices[J]. OPEC Energy Review, 2019,43(1):92-105 [16] Fernandez-Diaz J. M., Morley B. Interdependence among Agricultural Commodity Markets, Macroeconomic Factors, Crude Oil and Commodity Index[J]. Research in International Business and Finance, 2019,47:174-194 [17] 郭娆锋. 中美玉米期货与现货价格的联动性研究[J]. 价格理论与实践, 2015,(11):119-121 [18] 林光华,陈佳鑫. 国内外玉米价格传导效应研究——基于玉米临储政策改革背景下的分析[J]. 价格理论与实践, 2018,5(3):111-114 [19] 凌正华,孔令一. 玉米产业链期货价格传导效应研究[J]. 价格理论与实践, 2018,5(9):103-106 [20] Bowman C., Husain A. M. Forecasting Commodity Prices:Futures Versus Judgment[R]. IMF Working Papers, 2004 [21] Radha K., Balakrishnan S. The Role of Commodity Futures in Risk Management:A Study of Select Agricultural Commodities[J]. IUP Journal of Financial Risk Management, 2017,14(4):7-29 [22] 杨艳涛,秦富. 中国玉米进口贸易与国际市场价格相关性分析[J]. 价格理论与实践, 2015,2(12):71-73 [23] Yan Y., Tian L., Zhang Y. Is Chinese or American Maize Priceeffective for Trading and Policy-Making Reference?[J]. China Agricultural Economic Review, 2014,6(3):470-484 [24] 闫云仙. 中国玉米期货市场价格发现功能的实证分析——基于有向无环图的应用[J]. 中国农村经济, 2010,26(7):39-46 [25] 陆刚. 农产品期货价格联动性实证研究——基于中美玉米期货日收盘价数据[J]. 系统科学与数学, 2015,35(2):181-192 [26] Wang S. Y., Yu L. A., Lai K. K. Crude Oil Price Forecasting with TEI@I Methodology[J]. Journal of Systems & Complexity, 2005,18(2):145-166 [27] 汪寿阳,余乐安,黎建强. TEI@I方法论及其在外汇汇率预测中的应用[J]. 管理学报, 2007,4(1):21-27 [28] 张茜,吴超,乔晗,等. 基于TEI@I方法论的中国季播电视综艺节目收视率预测[J]. 系统工程理论与实践, 2016,36(11):2905-2914 [29] 沈书立,李祥飞. TEI@I框架下的交通道路脆性预测模型研究[J]. 管理工程学报, 2018,32(2):240-247 [30] Tian X., Liu L., Lai K. K., et al. Analysis and Forecasting of Port Logistics Using TEI@I Methodology[J]. Transportation Planning and Technology, 2013,36(8):685-702 [31] Chen Q., Zhang C. Grey Prediction of China Grain Production with TEI@I Methodology[C]. IEEE International Conference on Grey Systems and Intelligent Services, 2015 [32] Xin T., Lu X., Deng X. A TEI@I-Based Integrated Framework for Port Logistics Forecasting[C]. International Conference on Business Intelligence & Financial Engineering, 2009 [33] Abdulkarim S. A., Lawal I. A. A Cooperative Neural Network Approach for Enhancing Data Traffic Prediction[J]. Turkish Journal of Electrical Engineering & Computer Sciences, 2017,25(6):4746-4756 [34] Zhu Y. C., Zhang C. K. Gold Price Prediction Based on PCA-GA-BP Neural Network[J]. Journal of Computer and Communications, 2018,6(7):22-33 [35] Riedmiller M., Braun H. A Direct Adaptive Method for Faster Backpropagation Learning:The RPROP Algorithm[C]. IEEE International Conference on Neural Networks, 1993 [36] 王勃,徐静. 基于蚁群优化算法的BP神经网络的RPROP混合算法仿真的研究[J]. 计算机测量与控制, 2018,26(7):195-197 [37] 张吉豫,刘先华,梁堃,等. 一种基于人工神经网络的基本块重排方法[J]. 北京大学学报(自然科学版), 2011,47(1):9-16 [38] Igel C., Hüsken M. Empirical Evaluation of the Improved Rprop Learning Algorithms[J]. Neurocomputing, 2003,50:105-123 [39] Baig M. M., Awais M. M., El-Alfy E. S. M. AdaBoost-Based Artificial Neural Network Learning[J]. Neurocomputing, 2017,248:120-126 [40] Hermanto R. P., Suharjito S., Diana M., et al. Waiting-Time Estimation in Bank Customer Queues Using RPROP Neural Networks[J]. Procedia Computer Science, 2018,135:35-42 [41] Kantsila A., Lehtokangas M., Saarinen J. Complex RPROP-Algorithm for Neural Network Equalization of GSM Data Bursts[J]. Neurocomputing, 2004,61:339-360 [42] 陶长琪,江海峰. 单位根检验中的Wald检验量研究:Bootstrap法VS临界值法[J]. 系统工程理论与实践, 2014,34(5):1161-1170 [43] 邹志红,张正军,冯允成. 仿真输出分析中置信区间的Bootstrap估计方法[J]. 系统工程理论与实践, 1997,17(2):15-18 [44] 欧变玲,龙志和,林光平. 空间滞后模型中Moran's I统计量的Bootstrap检验[J]. 系统工程理论与实践, 2010,30(9):1537-1544 [45] 张嘉为,索丽娜,齐晓楠,等. 基于TEI@I方法论的通货膨胀问题分析与预测[J]. 系统工程理论与实践, 2010,30(12):2157-2164 |