›› 2016, Vol. 28 ›› Issue (1): 11-21,41.

• 经济与金融管理 • 上一篇    下一篇

中国航空燃油消费分析及预测

柴建1,3, 张钟毓2, 李新3, 汪寿阳3   

  1. 1. 西安电子科技大学经济与管理学院, 西安 710126;
    2. 西北农林科技大学计划财务处, 杨凌 712100;
    3. 中国科学院数学与系统科学研究院, 北京 100190
  • 收稿日期:2013-10-24 出版日期:2016-01-30 发布日期:2016-02-01
  • 作者简介:柴建,西安电子科技大学经济与管理学院,副教授,博士;张钟毓,西北农林科技大学计划财务处,硕士;李新,中国科学院数学与系统科学研究院,博士;汪寿阳,中国科学院数学与系统科学研究院副院长,教授,博士生导师。
  • 基金资助:

    国家自然科学基金青年项目(71103115);中国博士后科学基金项目(2012M510580);陕西省软科学研究计划项目(2012KRM95)。

Analysis and Forecast of Aviation Fuel Consumption in China

Chai Jian1,3, Zhang Zhongyu2, Li Xin3, Wang Shouyang3   

  1. 1. College of Economics and Management, Xidian University, Xi'an 710126;
    2. Division of Planning and Finance, Northwest Agriculture and Forestry University, Yangling 712100;
    3. Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190
  • Received:2013-10-24 Online:2016-01-30 Published:2016-02-01

摘要:

本文对中国航空燃油消费进行了多维度预测,证实了即便未来航空燃油效率提高也难以抵消航空运输需求过快上升而导致中国航油消费总量上涨幅度较大的结果。现有文献没有提供便于对未来航空燃油消费进行直观解释及分解分析的预测方法。本文通过结构分解基础上的间接预测方法,将航空燃油需求分解为效率因素(航空燃油效率)和总量因素(航空运输总周转量),利用通径分析技术筛选两个指标的核心影响因素,然后在模型选择的基础上,基于单变量(ETS、ARIMA模型)和多变量(Bayes多元回归)两个维度对航空燃油效率及航空运输总周转量进行分析和预测,最后综合考虑了以上两种结果对航空燃油消费需求进行了最终的分析和组合预测。结果表明,航空正班载运率每提高1%使得航空燃油效率提高0.8%;城镇化率每提高1%使得航空总周转量提高3.8%;人均GDP每提高1%使得航空总周转量相应提高0.4%。"十二五"末即2015年中国航空燃油消费量约为2800万吨,2020年约为5000万吨。

关键词: 航空燃油消费, 航空燃油效率, ETS, ARIMA, Bayes

Abstract:

In this paper, a multi-dimensional forecast for China's aviation fuel consumption is processed to confirm that although aviation fuel efficiency will improve in future, China aviation fuel consumption still rise significantly because of the increasing demand for air transport. There is few literature researching forecast methods of direct explanation and decomposition analysis for the future aviation fuel consumption. Based on a structural decomposition with indirect forecast, aviation fuel consumption is decomposed into efficient factors and total factors (aviation fuel efficiency and total turnover of aeronautical transport). The core influencing factors of these two indexes are selected by path analysis. These two indexes are analyzed and forecast by using univariate and multivariate models (ETS/ARIMA model and Bayesian multivariate regression). Finally, combined forecast of aviation fuel consumption demand is analyzed by integrating the above two results. The results show that route flight carrying rate elasticity of aviation fuel efficiency is 0.8%. Urbanization rate elasticity of aviation total turnover is 3.8% and per capital GDP elasticity is 0.4%. At the end of 2015, China aviation fuel consumption will increase up to 28 million tons, and 50 million tons in 2020.

Key words: aviation fuel demand, aviation fuel efficiency, ETS, ARIMA, Bayes