[1] 袁先智,周云鹏,严诚幸,等. 财务欺诈风险特征筛选框架的建立和应用[J]. 中国管理科学, 2022,30(3):43-54 Yuan X. Z., Zhou Y. P., Yan C. X., et al. The Framework for the Risk Feature Extraction Method on Corporate Financial Fraud George[J]. Chinese Journal of Management Science, 2022,30(3):43-54 [2] Dechow P. M., Sloan R. G., Sweeney A. P. Causes and Consequences of Earnings Manipulation: An Analysis of Firms Subject to Enforcement Actions by the SEC[J]. Contemporary Accounting Research, 1996,13(1):1-36 [3] Beneish M. D. The Detection of Earnings Manipulation[J]. Financial Analysts Journal, 1999,55(5):24-36 [4] 王俊,郭旭. 管理者行为惯性与上市公司舞弊——基于高管公司间变更的视角[J]. 管理评论, 2022,34(7):289-301 Wang J., Guo X. Management’s Behavioral Inertia and Corporate Fraud: Evidence from Executives’ Job-hopping in China[J]. Management Review, 2022,34(7):289-301 [5] Amiram D., Bozanic Z., Rouen E. Financial Statement Errors: Evidence from the Distributional Properties of Financial Statement Numbers[J]. Review of Accounting Studies, 2015,20(4):1540-1593 [6] 刘堃,巴曙松,任亮. 中国信用风险预警模型及实证研究——基于企业关联关系和信贷行为的视角[J]. 财经研究, 2009,35(7):13-27 Liu K., Ba S. S., Ren L. Research on Credit Risk Early-warning Model Based on the Correlation and Credit Behavior of Enterprises[J]. Journal of Finance and Economics, 2009,35(7):13-27 [7] Beatty A., Liao S., Yu J. J. The Spillover Effect of Fraudulent Financial Reporting on Peer Firms’ Investments[J]. Journal of Accounting and Economics, 2013,55(2-3):183-205 [8] 陆蓉,常维. 近墨者黑:上市公司违规行为的“同群效应”[J]. 金融研究, 2018,(8):172-189 Lu R., Chang W. Peer Effect in Corporate Fraud[J]. Journal of Financial Research, 2018,(8):172-189 [9] 黄世忠,叶钦华,叶凡. 隐性关联关系与真实盈余管理——基于工商大数据的研究[J]. 会计研究, 2024,(4):35-46 Huang S. Z., Ye Q. H., Ye F. Hidden Related Party Relations and Real Earnings Management[J]. Accounting Research, 2024,(4):35-46 [10] 向元高,罗进辉. 共同股东与公司治理趋同[J]. 系统工程理论与实践, 2023,43(6):1568-1596 Xiang Y. G., Luo J. H. Common Shareholders and Corporate Governance Convergence[J]. Systems Engineering-Theory & Practice, 2023,43(6):1568-1596 [11] Hope O., Lu H. R. Economic Consequences of Corporate Governance Disclosure: Evidence from the 2006 SEC Regulation on Related-Party Transactions[J]. The Accounting Review, 2020,95(4):263-290 [12] 刘丽华,徐艳萍,饶品贵,等. 一损俱损:违规事件在企业集团内的传染效应研究[J]. 金融研究, 2019,(6):113-131 Liu L. H., Xu Y. P., Rao P. G., et al. The Contagion Effects of Irregularities within Business Groups[J]. Journal of Financial Research, 2019,(6):113-131 [13] Dechow P. M., Ge W., Larson C. R., et al. Predicting Material Accounting Misstatements[J]. Contemporary Accounting Research, 2011,28(1):17-82 [14] Bao Y., Ke B., Li B., et al. Detecting Accounting Fraud in Publicly Traded U.S. Firms Using a Machine Learning Approach[J]. Journal of Accounting Research, 2022,58(1):199-235 [15] 汪昌云,孙艳梅. 代理冲突、公司治理和上市公司财务欺诈的研究[J]. 管理世界, 2010,(7):130-143 Wang C. Y., Sun Y. M. A Study on Conflicts among Agents, on Corporate Governance and on Listed Companies’ Fraud in Financial Statement[J]. Journal of Management World, 2010,(7):130-143 [16] Beneish M. D. Incentives and Penalties Related to Earnings Overstatements That Violate GAAP[J]. The Accounting Review, 1999,74(4):425-457 [17] Craja P., Kim A., Lessmann S. Deep Learning for Detecting Financial Statement Fraud[J]. Decision Support Systems, 2020,139:113421 [18] Purda L., Skillicorn D. Accounting Variables, Deception, and a Bag of Words: Assessing the Tools of Fraud Detection[J]. Contemporary Accounting Research, 2015,32(3):1193-1223 [19] Li J., Li N., Xia T., et al. Textual Analysis and Detection of Financial Fraud: Evidence from Chinese Manufacturing Firms[J]. Economic Modelling, 2023,126:106428 [20] 钱苹,罗玫. 中国上市公司财务造假预测模型[J]. 会计研究, 2015,(7):18-25 Qian P., Luo M. Predicting Accounting Fraud in China[J]. Accounting Research, 2015,(7):18-25 [21] Hajek P., Henriques R. Mining Corporate Annual Reports for Intelligent Detection of Financial Statement Fraud - A Comparative Study of Machine Learning Methods[J]. Knowledge-Based Systems, 2017,128:139-152 [22] Ali A., Abd Razak S., Othman S. H., et al. Financial Fraud Detection Based on Machine Learning: A Systematic Literature Review[J]. Applied Sciences, 2022,12(19):9637 [23] 刘峤,李杨,段宏,等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016,53(3):582-600 Liu Q., Li Y., Duan H., et al. Knowledge Graph Construction Techniques[J]. Journal of Computer Research and Development, 2016,53(3):582-600 [24] Ji S., Pan S., Cambria E., et al. A Survey on Knowledge Graphs: Representation, Acquisition, and Applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022,33(2):494-514 [25] 陈晓军,向阳. 企业风险知识图谱的构建及应用[J]. 计算机科学, 2020,47(11):237-243 Chen X. J., Xiang Y. Construction and Application of Enterprise Risk Knowledge Graph[J]. Computer Science, 2020,47(11):237-243 [26] Song D., Schilder F., Hertz S., et al. Building and Querying an Enterprise Knowledge Graph[J]. IEEE Transactions on Services Computing, 2019,12(3):356-369 [27] 洪亮,欧阳晓凤. 金融股权知识大图的知识关联发现与风险分析[J]. 管理科学学报, 2022,25(4):44-66 Hong L., Ouyang X. F. Knowledge Association Discovery and Risk Analysis Based on Financial Equity Knowledge Graph[J]. Journal of Management Sciences in China, 2022,25(4):44-66 [28] Cheng W., Guo K., Jiang T., et al. A Knowledge Graph Based Framework in Relationship Modelling and Real-Time Monitoring of Market Participants[J]. Journal of Physics: Conference Series, 2020,1682(1):012026 [29] 彭尧,张玲玲,邓智斌,等. 基于企业股权关系知识图谱的制造业信用风险传染分析[J]. 管理评论, 2023,35(10):251-267 Peng Y., Zhang L. L., Deng Z. B., et al. Analysis of Credit Risk Contagion Based on the Knowledge Graph of Enterprise Equity Relations[J]. Management Review, 2023,35(10):251-267 [30] Li J., Chang Y., Wang Y., et al. Tracking down Financial Statement Fraud by Analyzing the Supplier-Customer Relationship Network[J]. Computers & Industrial Engineering, 2023,178:109118 [31] 李建平,孙灏,常闫芃,等. 考虑审计要素多重语义关联的财务欺诈识别[J]. 管理科学学报, 2024,27(3):58-70 Li J. P., Sun H., Chang Y. P., et al. Financial Statement Fraud Identification Considering the Multiple-dimensional Semantic Associations of Auditing Elements[J]. Journal of Management Sciences in China, 2024,27(3):58-70 [32] 王思宇,陈建平. 基于LightGBM算法的信用风险评估模型研究[J]. 软件导刊, 2019,18(10):19-22 Wang S. Y., Chen J. P. Research on Credit Risk Assessment Model Based on LightGBM Algorithm[J]. Software Guide, 2019,18(10):19-22 [33] Dyck A., Morse A., Zingales L. Who Blows the Whistle on Corporate Fraud?[J]. The Journal of Finance, 2010,65(6):2213-2253 [34] West J., Bhattacharya M. Intelligent Financial Fraud Detection: A Comprehensive Review[J]. Computers & Security, 2016,57:47-66 |