[1] Tang X., Li X., Ding Y., et al. The Pace of Artificial Intelligence Innovations: Speed, Talent and Trial and Error[J]. Journal of Informetrics, 2020,14(4):101094 [2] Shaheer N., Kim K., Li S. Internationalization of Digital Innovations: A Rapidly Evolving Research Stream[J]. Journal of International Management, 2022,28(4):100970 [3] Igna I., Venturini F. The Determinants of AI Innovation across European Firms[J]. Research Policy, 2023,52(2):104661 [4] Dernis H., Gkotsis P., Grassano N., et al. World Corporate Top R&D Investors: Shaping the Future of Technologies and of AI[R]. Joint Research Centre, 2019 [5] Beraja M., Yang D. Y., Yuchtman N. Data-intensive Innovation and the State: Evidence from AI Firms in China[J]. The Review of Economic Studies, 2023,90(4):1701-1723 [6] Mariani M. M., Machado I., Magrelli V., et al. Artificial Intelligence in Innovation Research: A Systematic Review, Conceptual Framework, and Future Research Directions[J]. Technovation, 2023,122:102626 [7] Tornatzky L. G., Fleischer M., Chakrabarti A. K. The Processes of Technological Innovation[M]. Lexington, MA: Lexington Books, 1990 [8] Parteka A., Kordalska A. Artificial Intelligence and Productivity: Global Evidence from AI Patent and Bibliometric Data[J]. Technovation, 2023,125(7):102764 [9] Kemp A. Competitive Advantage through Artificial Intelligence: Toward a Theory of Situated AI[J]. Academy of Management Review, 2024,49(3):618-635 [10] Babina T., Fedyk A., He A., et al. Artificial Intelligence, Firm Growth, and Product Innovation[J]. Journal of Financial Economics, 2024,151:103745 [11] Alsheibani S., Cheung Y., Messom C. Artificial Intelligence Adoption: AI-readiness at Firm-level[C]. Pacific Asia Conference on Information Systems, 2018 [12] Hradecky D., Kennell J., Cai W., et al. Organizational Readiness to Adopt Artificial Intelligence in the Exhibition Sector in Western Europe[J]. International Journal of Information Management, 2022,65:102497 [13] Tehrani A. N., Ray S., Roy S. K., et al. Decoding AI Readiness: An In-depth Analysis of Key Dimensions in Multinational Corporations[J]. Technovation, 2024,131:102948 [14] Arenal A., Armuña C., Feijoo C., et al. Innovation Ecosystems Theory Revisited: The Case of Artificial Intelligence in China[J]. Telecommunications Policy, 2020,44(6):101960 [15] 董直庆,姜昊,王林辉.“头部化”抑或“均等化”:人工智能技术会改变企业规模分布吗?[J]. 数量经济技术经济研究, 2023,40(2):113-135 Dong Z. Q., Jiang H., Wang L. H. “Cephalization” or “Homogenization”: Will AI Technology Change the Size Distribution of Firms?[J]. Journal of Quantitative & Technological Economics, 2023,40(2):113-135 [16] Yang C. H. How Artificial Intelligence Technology Affects Productivity and Employment: Firm Level Evidence from Taiwan[J]. Research Policy, 2022,51(6):104536 [17] 任英华,刘宇钊,李海彤. 人工智能技术创新与企业全要素生产率[J]. 经济管理, 2023,45(9):50-67 Ren Y. H., Liu Y. Z., Li H. T. Artificial Intelligence Technology Innovation and Enterprise Total Factor Productivity[J]. Business and Management Journal, 2023,45(9):50-67 [18] Tambe P., Hitt L., Rock D., et al. Digital Capital and Superstar Firms[R]. NBER Working Paper, 2020 [19] Acemoglu D., Restrepo P. Demographics and Automation[J]. The Review of Economic Studies, 2022,89(1):1-44 [20] 杨媛棋,寇明婷,陈凯华. 企业基础研究倾向影响因素的组态效应——基于中关村高新技术企业的QCA分析[J]. 管理评论, 2024,36(4):88-99 Yang Y. Q., Kou M. T., Chen K. H. Configuration Effects of Influencing Factors for Basic Research Inclination of Firms—QCA Analysis Based on High-tech Firms in Zhongguancun Science Park[J]. Management Review, 2024,36(4):88-99 [21] 张光宇,宋泽明,戴海闻. 跨界技术并购如何促进后发企业颠覆性创新[J]. 科学学研究, 2023,41(9):1716-1728 Zhang G. Y., Song Z. M., Dai H. W. How Boundary-spanning Technology Mergers & Acquisitions Promote Disruptive Innovation of Latecomers[J]. Studies in Science of Science, 2023,41(9):1716-1728 [22] 王宛秋,王雪晴,刘晓燕,等. 基于TOE框架的企业跨界技术并购绩效的提升策略研究——一项模糊集的定性比较分析[J]. 南开管理评论, 2022,25(2):136-148 Wang W. Q., Wang X. Q., Liu X. Y., et al. A TOE Framework Based Research of Boundary-spanning Technology M&A Performance: The Fuzzy-Set Qualitative Comparative Analysis[J]. Nankai Business Review, 2022,25(2):136-148 [23] Laut P., Dumbach P., Eskofier B. M. Integration of Artificial Intelligence in the Organizational Adoption: A Configurational Perspective[C]. ICIS, 2021 [24] Chatterjee S., Pana N. P., Dwivedi Y. K., et al. Understanding AI Adoption in Manufacturing and Production Firms Using an Integrated TAM-TOE Model[J]. Technological Forecasting and Social Change, 2021,170:120880 [25] 张铭,曾静,曾娜,等. “技术—组织—环境”因素联动对互联网企业数字创新的影响——基于TOE框架的模糊集定性比较分析与必要条件分析[J]. 科学学与科学技术管理, 2024,45(3):21-40 Zhang M., Zeng J., Zeng N., et al. The Impact of Technology-Organization-Environment Factors Linkage on Digital Innovation of Internet Enterprises: Fuzzy Set Qualitative Comparative Analysis and Necessary Condition Analysis Based on TOE Framework[J]. Science of Science and Management of S.& T., 2024,45(3):21-40 [26] Shi J., Wang Y. Prerequisites for the Innovation Performance of Artificial Intelligence Laboratory: A Fuzzy-Set Qualitative Comparative Analysis[J]. IEEE Transactions on Engineering Management, 2024,71:5341-5356 [27] Radhakrishnan J., Chattopadhyay M. Determinants and Barriers of Artificial Intelligence Adoption—A Literature Review[C]. International Working Conference on Transfer and Diffusion of IT, 2020 [28] Jin X., Wang J., Chen S., et al. A Study of the Relationship between the Knowledge Base and the Innovation Performance under the Organizational Slack Regulating[J]. Management Decision, 2015,53(10):2202-2225 [29] Baiyere A., Grover V., Lyytinen K. J., et al. Digital “x”—Charting a Path for Digital-Themed Research[J]. Information Systems Research, 2023,34(2):463-486 [30] Ozalp H., Eggers J. P., Malerba F. Hitting Reset: Industry Evolution, Generational Technology Cycles, and the Dynamic Value of Firm Experience[J]. Strategic Management Journal, 2023,44(5):1292-1327 [31] 赵艺璇,成琼文. 生态系统视角下企业如何实现“数实”资源融合?[J]. 管理评论, 2024,36(4):261-272 Zhao Y. X., Cheng Q. W. An Exploration from the Ecological Perspective on How Enterprises can Integrate Digital and Physical Resources[J]. Management Review, 2024,36(4):261-272 [32] Kopka A., Fornahl D. Artificial Intelligence and Firm Growth—Catch-up Processes of SMEs through Integrating AI into Their Knowledge Bases[J]. Small Business Economics, 2024,62(1):63-85 [33] Inaba T., Squicciarini M. ICT: A New Taxonomy Based on the International Patent Classification[R]. OECD Science, Technology and Industry Working Papers, 2017 [34] Du Y., Liu Q., Kim P. H., et al. Riding the Waves of Change: Using Qualitative Comparative Analysis to Analyze Complex Growth Patterns in Entrepreneurship[J]. Entrepreneurship Theory and Practice, 2025,49(1):312-353 [35] Yan H., Hu X., Wu D., et al. Exploring the Green Development Path of the Yangtze River Economic Belt Using the Entropy Weight Method and Fuzzy-Set Qualitative Comparative Analysis[J]. PLoS One, 2021,16(12):e0260985 [36] 王萍,李轩,曹高辉. 组态视角下共享住宿多主体信任的影响因素研究[J]. 管理评论, 2023,35(4):144-155 Wang P., Li X., Cao G. H. Unravelling Factors Influencing Trust in Sharing Accommodation via Configuration Perspective[J]. Management Review, 2023,35(4):144-155 [37] Giustiziero G., Kretschmer T., Somaya D., et al. Hyperspecialization and Hyperscaling: A Resource-based Theory of the Digital Firm[J]. Strategic Management Journal, 2023,44(6):1391-1424 [38] Meuer J., Rupietta C. A Review of Integrated QCA and Statistical Analyses[J]. Quality & Quantity, 2017,51(5):2063-2083 [39] Litrico J. B., David R. J. The Evolution of Issue Interpretation within Organizational Fields: Actor Positions, Framing Trajectories, and Field Settlement[J]. Academy of Management Journal, 2017,60(3):986-1015 [40] 郭凯明,王钰冰,龚六堂. 劳动供给转变、有为政府作用与人工智能时代开启[J]. 管理世界, 2023,39(6):1-21 Guo K. M., Wang Y. B., Gong L. T. Labor Supply Transformation, Well-functioning Government and the Era of Artificial Intelligence[J]. Journal of Management World, 2023,39(6):1-21 |