Management Review ›› 2020, Vol. 32 ›› Issue (7): 280-292.
• Special Issue on Systems Management Methodologies of China • Previous Articles Next Articles
Chai Jian, Kou Honghong
Received:
2019-09-12
Online:
2020-07-28
Published:
2020-08-08
Chai Jian, Kou Honghong. Review and Prospect of System Management Prediction Technology Based on TEI@I Methodology[J]. Management Review, 2020, 32(7): 280-292.
[1] 钱学森. 一个科学新领域——开放的复杂巨系统及其方法论[J]. 上海理工大学学报, 2011,33(6):26-32 [2] 杰弗里·A.艾斯特凡著,张新国译. 基于模型的系统工程(MBSE)方法论综述[M]. 北京:机械工业出版社, 2014 [3] 吕永波. 系统工程[M]. 北京:清华大学出版社, 2005 [4] 许国志,顾基发. 系统工程的回顾与展望[J]. 系统工程理论与实践, 1990,10(6):1-15 [5] 李怀祖. 管理研究方法论[M]. 西安:西安交通大学出版社, 2004 [6] Wang S. Y., Yu L. A., Lai K. K. Crude Oil Price Forecasting with TEI@I Methodology[J]. Journal of Systems Science and Complexity, 2005,18(2):145-166 [7] 吴清烈,蒋尚华. 预测与决策分析[M]. 南京:东南大学出版社, 2004 [8] 徐国祥. 统计预测与决策[M]. 上海:上海财经大学出版社, 2008 [9] Gooijer J. G. D., Hyndman R. J. 25 Years of Time Series Forecasting[J]. Internationa Journal of Forecasting, 2006,22(3):443-473 [10] Armstrong J. S., Fildes R. Making Progress in Forecasting[J]. International Journal of Forecasting, 2006,22(3):433-441 [11] 汪寿阳,余乐安,房勇,等. 国际油价波动分析与预测[M]. 长沙:湖南大学出版社, 2008 [12] 余乐安,汪寿阳,黎建强. 外汇汇率与国际原油价格波动预测——汇率与国际方法论[M]. 长沙:湖南大学出版社, 2006 [13] Lawrence M., Goodwin P., O'Connor M., et al. Judgmental Forecasting:A Review of Progress Oer the Last 25 Years[J]. International Journal of Forecasting, 2006,22(3):493-518 [14] Sanders N. R., Manrodt K. B. The Efficacy of Using Judgmental Versus Quantitative Forecasting Methods in Practice[J]. Omega, 2003,31(6):511-522 [15] 杨春,李怀祖. 一个证据推理模型及其在专家意见综合中的应用[J]. 系统工程理论与实践, 2001,21(4):43-48 [16] 杨兴雨,刘悦,杨晓光,等. 带交易费用的集成专家意见在线投资组合策略[J]. 系统工程理论与实践, 2018,38(8):1946-1959 [17] Jiang R., Kleer R., Piller F. T. Predicting the Future of Additive Manufacturing:A Delphi Study on Economic and Societal Implications of 3D Printing for 2030[J]. Technological Forecasting and Social Change, 2017,117(4):84-97 [18] Wu K. J., Liao C. J., Tseng M. L., et al. Toward Sustainability:Using Big Data to Explore the Decisive Attributes of Supply Chain Risks and Uncertainties[J]. Journal of Cleaner Production, 2017,142(2):663-676 [19] 崔志明,万劲波,孟晓华,等. 技术预见"市场德尔菲法"的特点及实施程序探讨[J]. 科学学与科学技术管理, 2004,25(12):13-17 [20] Kahn H., Wiener A. J. The Year 2000[M]. London:Macmillan, 1967 [21] 柴建,卢全莹,邢丽敏,等. 中国天然气产业的发展过快了吗?[J]. 管理评论, 2017,29(8):23-32 [22] Lee S., Cho C., Hong E., et al. Forecasting Mobile Broadband Traffic:Application of Scenario Analysis and Delphi Method[J]. Expert Systems with Applications, 2016,44(2):126-137 [23] Myers R. H. Classical and Modern Regression with Applications[M]. 北京:高等教育出版社, 2008 [24] 谢宇. 回归分析[M]. 北京:社会科学文献出版社, 2013 [25] Harrington P.著,李锐译. 机器学习实战[M]. 北京:人民邮电出版社,2013 [26] Cleveland W. S., Devlin S. J. Locally Weighted Regression:An Approach to Regression Analysisby LocalFitting[J]. Journal of the American Statistical Association, 1988,83(403):596-610 [27] Hoerl A. E., Kennard R. W. Ridge Regression:Biased Estimation for Non Orthogonal Problems[J]. Technometrics, 1970,12(1):55-67 [28] Motulsky H. J., Ransnas L. A. Fitting Curves to Data Using Nonlinear Regression:A Practical and Nonmathematical Review[J]. The FASEB Journal, 1987,1(5):365-374 [29] 刘长生,郭小东,简玉峰. 能源消费对中国经济增长的影响研究——基于线性与非线性回归方法的比较分析[J]. 产业经济研究, 2009,(1):1-9 [30] 郦金梁,何诚颖,陈伟,等. 特质风险与公司投资行为选择——基于变量间非线性关系的视角[J]. 管理世界, 2018,34(3):68-77 [31] 谷克鉴,陈福中. 净出口的非线性增长贡献——基于1995非线性增长年中国省级面板数据的实证考察[J]. 经济研究, 2016,51(11):13-27 [32] Newbold P. The Competition to End All Competitions[J]. Journal of Forecasting, 1983,2(3):276-279 [33] 肖皓,杨佳衡,乔晗. 需求侧全球碳排放强度的度量及分解[J]. 系统工程理论与实践, 2015,35(7):1646-1656 [34] 李晖. 基于LMDI分解技术的中国分行业劳动报酬增长因素分析[J]. 管理评论, 2018,30(5):148-157 [35] 韩豫峰,汪雄剑,周国富,等. 中国股票市场是否存在趋势?[J]. 金融研究, 2014,(3):152-163 [36] Barrow D. K. Forecasting Intraday Call Arrivals Using the Seasonal Moving Average Method[J]. Journal of Business Research, 2016,69(12):6088-6096 [37] Khamooshi H., Abdi A. Project Duration Forecasting Using Earned Duration Management with Exponential Smoothing Techniques[J]. Journal of Management in Engineering, 2017,33(1):1-10 [38] Maia A. L. S., de Carvalho F. A. T. Holt's Exponential Smoothing and Neural Network Models for Forecasting Interval-valued Time Series[J]. International Journal of Forecasting, 2011,27(3):740-759 [39] Meng M., Jing K., Mander S. Scenario Analysis of CO2 Emissions from China's Electric Power Industry[J]. Journal of Cleaner Production, 2017,142(1):3101-3108 [40] Yu S., Zheng S., Li X., et al. China Can Peak Its Energy-related Carbon Emissions Before 2025:Evidence from Industry Restructuring[J]. Energy Economics, 2018,73(6):91-107 [41] Chatfield C. The Analysis of Time Series[M]. London:Chapman and Hall, 1996 [42] Bunn D., Wright G. Interaction of Judgemental and Statistical Forecasting Methods:Issues & Analysis[J]. Management Science, 1991,37(5):501-518 [43] Armstrong J. S. Extrapolation for Time-Series and Cross-Sectional Data[J]. Principles of Forecasting, 2001,30(3):217-243 [44] De Gooijer J. G., Hyndman R. J. 25 Years of Time Series Forecasting[J]. International Journal of Forecasting, 2006,22(3):443-473 [45] 詹姆斯·D.汉密尔顿著,夏晓华译. 时间序列列分析[M]. 北京:中国人民大学出版社, 2015 [46] Valipour M., Banihabib M. E., Behbahani S. M. R. Comparison of the ARMA and the Autoregressive Artificial Neural Network Models in Forecasting the Monthly Inflow of Dez Dam Reservoir[J]. Journal of Hydrology, 2013,476(1):433-441 [47] Wang Q., Li S., Li R., et al. Forecasting US Shale Gas Monthly Production Using a Hybrid ARIMA and Metabolic Nonlinear Grey Model[J]. Energy, 2018,160(8):378-387 [48] 李蕾,李超,丁雪辰,等. 我国执业(助理)医师需求集成预测——基于GM、ARIMA和VAR模型的实证研究[J]. 管理评论, 2018,30(3):171-178 [49] Tong H., Lim K. S. Threshold Autoregression Limit Cycles and Cyclical Data[J]. Journal of the Royal Statistical Society, 1980,42(3):245-292 [50] 周弘,张成思,何启志. 中国居民资产配置效率的门限效应研究:金融约束视角[J]. 金融研究, 2018,(10):59-75 [51] 刘金全,郑挺国. 我国经济周期阶段性划分与经济增长走势分析[J]. 中国工业经济, 2008,(1):32-39 [52] 靳晓婷,张晓峒,栾惠德. 汇改后人民币汇率波动的非线性特征研究——基于门限自回归TAR模型[J]. 财经研究, 2008,34(9):48-57 [53] Sims C. A. Macroeconomics and Reality[J]. Econometrica, 1980,48(1):1-48 [54] Hansen L. P., Sargent T. J. Two Difficulties in Interpreting Vector Autoregressions[M]. Boulder:Westview Press, 1991 [55] Leamer E. E. Vector Autoregression for Causal Inference?[J]. Carnegie-rochester Conference Series on Public, 1985,22(1):255-304 [56] Sims C. A. Are Forecasting Models Usable for Policy Analysis?[J]. Quarterly Review, 1986,10(2):2-16 [57] Amisano G., Giannini C. Topics in Structural VAR Econometrics[M]. Berlin:Springer-Verlag, 1997 [58] Schorfheide F., Song D. Real-Time Forecasting with a Mixed-Frequency VAR[J]. Journal of Business & Economic Statistics, 2013,33(3):366-380 [59] 伍雪冬. 非线性时间序列在线预测建模与仿真[M]. 北京:国防工业出版社, 2015 [60] 陈桦,赵晓,齐慧. 基于决策支持系统的预测模型研究[J]. 微电子学与计算机, 2004,21(12):166-167 [61] Fildes R., Goodwin P. Forecasting Support Systems:What We Know, What We Need to Know[J]. International Journal of Forecasting, 2013,29(2):290-294 [62] Moon M. A., Mentzer J. T., Smith C. D. Conducting a Sales Forecasting Audit[J]. International Journal of Forecasting, 2003,19(1):5-25 [63] Fildes R., Goodwin P., Lawrence M. The Design Features of Forecasting Support Systems and Their Effectiveness[J]. Decision Support Systems, 2006,42(1):351-361 [64] Van Bruggen G. H., Spann M., Lilien G. L., et al. Prediction Markets as Institutional Forecasting Support Systems[J]. Decision Support Systems, 2010,49(4):404-416 [65] Keen P. G. Decision Support Systems:An Organizational Perspective[J]. Lettere Al Nuovo Cimento, 1979,24(24):471-478 [66] Kohzadi N., Boyd M. S., Kermanshahi B., et al. A Comparison of Artificial Neural Network and Time Series Models for Forecasting Commodity Prices[J]. Neurocomputing, 1996,10(2):169-181 [67] Zhang G. P. Time Series Forecasting Using a Hybrid ARIMA and Neural Network Model[J]. Neurocomputing, 2003,50(1):159-175 [68] Ghiassi M., Saidane H., Zimbra D. K. A Dynamic Artificial Neural Network Model for Forecasting Time Series Events[J]. International Journal of Forecasting, 2005,21(2):341-362 [69] Wang L., Zeng Y., Chen T. Back Propagation Neural Network with Adaptive Differential Evolution Algorithm for Time Series Forecasting[J]. Expert Systems with Applications, 2015,42(2):855-863 [70] Tseng F. M., Yu H. C., Tzeng G. H. Combining Neural Network Model With Seasonal Time Series ARIMA Model[J]. Technological Forecasting and Social Change, 2002,69(1):71-87 [71] Vapnik V. The Nature of Statistical Learning Theory[M]. New York:Springer-Verlag, 1995 [72] 安小米,马广惠,宋刚. 综合集成方法研究的起源及其演进发展[J]. 系统工程, 2018,36(10):1-13 [73] 于景元,周晓纪. 从定性到定量综合集成方法的实现和应用[J]. 系统工程理论与实践, 2002,22(10):26-32 [74] Wang S. Y. TEI@I:A New Nethodology for Studying Complex Systems[C]. The International Workshop on Complexity Science, Tsukuba, Japan, 2004 [75] Wang S. Y., Yu L. A. TEI@I:A New Methodology for Studying Volatility of International Oil Price[C]. The Open Conference of the International Research Team of AMSS on Complexity Science, Beijing, 2004 [76] Wang S. Y., Yu L. A., Lai K. K. Crude Oil Price Forecasting with TEI@I Methodology[J]. Journal of Systems Science and Complexity, 2005,18(2):145-166 [77] Yu L. A., Wang S., Lai K. K. Forecasting Crude Oil Price with an EMD-based Neural Network Ensemble Learning Paradigm[J]. Energy Economics, 2008,30(5):2623-2635 [78] Chai J., Liang T., Lai K. K., et al. The Future Natural Gas Consumption in China:Based on the LMDI-STIRPAT-PLSR Framework and Scenario Analysis[J]. Energy Policy, 2018,119:215-225 [79] 孙少龙. 基于"分解-聚类集成"学习范式的太阳辐射量预测技术研究及应用[D]. 兰州大学硕士学位论文, 2015 [80] 汪寿阳,余乐安,黎建强. TEI@I方法论及其在外汇汇率预测中的应用[J]. 管理学报, 2007,4(1):21-27 [81] Yu L. A., Wang S. Y., Lai K. K. Foreign-Exchange-Rate Forecasting with Artificial Neural Networks[M]. New York:Springer, 2007 [82] 张嘉为,索丽娜,齐晓楠,等. 基于TEI@I方法论的通货膨胀问题分析与预测[J]. 系统工程理论与实践, 2010,30(12):2157-2164 [83] Yan Y., Wei X., Hui B., et al. Method for Housing Price Forecasting Based on TEI@I Methodology[J]. Systems Engineering-Theory & Practice, 2007,27(7):1-9 [84] 郭琨,崔啸,王珏,等. "京十二条"房地产调控政策的影响——基于TEI@I方法论[J]. 管理科学学报, 2012,15(4):4-11 [85] 田歆,曹志刚,骆家伟,等. 基于TEI@I方法论的香港集装箱吞吐量预测方法[J]. 运筹与管理, 2009,18(4):82-89 [86] Tian X., Liu L., Lai K. K., et al. Analysis and Forecasting of Port Logistics Using TEI@I Methodology[J]. Transportation Planning and Technology, 2013,36(8):685-702 [87] Tian X., Lu X., Deng X. A TEI@I-Based Integrated Framework for Port Logistics Forecasting[C]. 2019 International Conference on Business Intelligence and Financial Engineering, 2009 [88] Yu L. A., Wang S. Y., Lai K. K., et al. Bio-Inspired Credit Risk Analysis——Computational Intelligence with Support Vector Machines[M]. Berlin:Springer-Verlag, 2008 [89] Yu L. A., Wang S. Y., Lai K. K. Computational Portfolio Selection[M]. Berlin:Springer-Verlag, 2008 [90] 田歆,汪寿阳,华国伟. 零售商供应链管理的一个系统框架与系统实现[J]. 系统工程理论与实践, 2009,29(10):45-52 [91] 汪寿阳,敖敬宁,乔晗,等. 基于知识给管理的商业模式冰山理论[J]. 管理评论, 2015,27(6):3-10 [92] Wang T., Tian X., Yu M., et al. Stage Division and Pattern Discovery of Complex Patient Care Processes[J]. Journal of Systems Science & Complexity, 2017,30(5):1136-1159 [93] 张茜,吴超,乔晗,等. 基于TEI@I方法论的中国季播电视综艺节目收视率预测[J]. 系统工程理论与实践, 2016,36(11):2905-2914 [94] Sun S., Wang S., Wei Y., et al. A Clustering-Based Nonlinear Ensemble Approach for Exchange Rates Forecasting[J]. IEEE, 2018,19(2):1-9 [95] Gan K., Sun S., Wang S., et al. A Secondary-decomposition-ensemble Learning Paradigm for Forecasting PM2.5 Concentration[J]. Atmospheric Pollution Research, 2018,9(6):989-999 [96] Zhang X., Yu L., Wang S., et al. Estimating the Impact of Extreme Events on Crude Oil Price:An EMD-based Event Analysis Method[J]. Energy Economics, 2009,31(5):768-778 [97] Sun S., Wei Y., Tsui K. L., et al. Forecasting Tourist Arrivals with Machine Learning and Internet Search Index[J]. Tourism Management, 2019,70(2):1-10 [98] 汤铃,余乐安,李建平,等. 复杂时间序列预测技术研究[M]. 北京:科学出版社, 2016 [99] 张珣,余乐安,黎建强,等. 重大突发事件对原油价格的影响[J]. 系统工程理论与实践, 2009,29(3):10-15 [100] Yu L., Wang Z., Tang L. A. Decomposition-ensemble Model with Data-characteristic-driven Reconstruction For Crude Oil Price Forecasting[J]. Applied Energy, 2015,156(10):251-267 [101] 汤铃,李建平,孙晓蕾,等. 基于模态分解的国家风险多尺度特征[J]. 管理评论, 2012,24(8):3-10 [102] Tang L., Yu L. A., He K. J. A Novel Data-characteristic-driven Modeling Methodology for Nuclear Energy Consumption Forecasting[J]. Applied Energy, 2014,128(9):1-14 [103] 柴建,张钟毓,李新,等. 中国航空燃油消费分析及预测[J]. 管理评论, 2016,28(1):11-21 [104] Chai J., Zhang Z. Y., Wang S. Y., et al. Aviation Fuel Demand Development in China[J]. Energy Economics, 2014,46(SI):224-235 [105] Chai J., Du M., Liang T., et al. Coal Consumption in China:How to Bend Down the Curve?[J]. Energy Economics, 2019,80(5):38-47 [106] Chai J., Xing L. M., Zhou X. Y., et al. Forecasting the WTI Crude Oil Price by a Hybrid-refined Method[J]. Energy Economics, 2018,71(3):114-127 [107] 张玲玲,房勇,杨涛,等. 管理科学与工程热点研究领域的文献计量分析[J]. 管理学报, 2005,2(4):379-385 [108] 李雪蓉,张晓旭,李政阳,等. 商业模式的文献计量分析[J]. 系统工程理论与实践, 2016,36(2):273-287 [109] Chen C., Hu Z., Liu S., et al. Emerging Trends in Regenerative Medicine:A Scientometric Analysis in Cite Space[J]. Expert Opinion on Biological Therapy, 2012,12(5):593-608 [110] Chen H., Chiang R. H. L., Storey V. C. Business Intelligence and Analytics:Form Big Data to Big Impact[J]. Mis Quarterly, 2012,36(4):1165-1188 [111] Lecun Y., Bengio Y., Hinton G. Deep Learning[J]. Nature, 2015,521(7553):436-444 [112] 胡毅,陈海强,齐鹰飞. 大数据时代计量经济学的新发展与新应用——第二届中国计量经济学者论坛(2018)综述[J]. 经济研究, 2019,54(3):199-203 [113] Hassani H., Silva E. S. Forecasting with Big Data:A Review[J]. Annals of Data Science, 2015,2(1):5-19 [114] 汪寿阳,洪永淼,霍红,等. 大数据时代下计量经济学若干重要发展方向[J]. 中国科学基金, 2019,33(4):386-393 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||