›› 2017, Vol. 29 ›› Issue (6): 152-164.

• 电子商务与信息管理 • 上一篇    下一篇

网络零售生态系统种群成长的系统动力学分析

雷兵1,2   

  1. 1. 河南工业大学管理学院, 郑州 450001;
    2. 河南工业大学商务智能与知识工程实验室, 郑州 450001
  • 收稿日期:2015-04-01 出版日期:2017-06-28 发布日期:2017-06-23
  • 作者简介:雷兵,河南工业大学管理学院副教授,博士
  • 基金资助:

    国家社科基金一般项目(14BGL153);河南省高校人文社科重点研究基地物流研究中心资助项目(2015-JD-04);河南省高等学校重点科研项目(17B630003);河南省高校新型智库专项研究项目

Population Growth of E-retailing Ecosystems:A System Dynamics Approach

Lei Bing1,2   

  1. 1. School of Management, Henan University of Technology, Zhengzhou 450001;
    2. Business Intelligence and Knowledge Engineering Lab, Henan University of Technology, Zhengzhou 450001
  • Received:2015-04-01 Online:2017-06-28 Published:2017-06-23

摘要:

网络零售生态系统中的种群有网络零售商、消费者、物流配送企业、网络零售服务外包企业等,它们通过捕食、竞争、互利和寄生等关系不断成长。采用系统动力学理论与方法,在对四种关系建立因果回路图的基础上,通过系统流图、方程及其仿真揭示中国网络零售业的网络购物消费者规模、人均网络购物消费额、物流配送能力、网络零售服务外包规模在2001-2030年间的发展情况。研究表明,中国网络零售业的快速发展受自身竞争优势及中国经济持续增长的双重影响;作为一个寄生产业,网络零售服务外包业规模不仅取决于网络零售业规模,也与服务外包产业自身发展高度相关。

关键词: 网络零售, 电子商务, 商业生态系统, 演化分析, 系统动力学

Abstract:

The population in e-retailing ecosystems includes e-retailers,consumers,logistics enterprises,services outsourcing,service outsourcing enterprises of e-retailing,etc.They keep growing through such relationships among them as predator-prey,competition,mutually benefit and parasitism.Base on methodology of system dynamics,this paper constructs causal loop diagram of 4 relationship to study the trends of e-retailing in China during 2001-2030,which includes the scale and spending of online consumes,distribution capabilities and scale of services outsourcing related to e-retailing.The system flowchart,equations and modeling of research process were detailed in this paper.The results show that,the rapid development of China's e-retailing in China is influenced by its own competitive advantage and sustained economic growth.As a parasitic industry,the scale of service outsourcing enterprises depends on the scale of the e-retailing sector and its development level.

Key words: e-retailing, e-business, business ecosystems, evolutionary analysis, system dynamics