管理评论 ›› 2025, Vol. 37 ›› Issue (11): 81-93.

• • 上一篇    

AI采用、动态能力与制造业企业新质生产力

郭润萍, 王克彩, 卢晓璇, 姜鹄   

  1. 吉林大学商学与管理学院, 长春 130012
  • 收稿日期:2024-08-20 发布日期:2025-12-17
  • 作者简介:郭润萍,吉林大学商学与管理学院教授,博士生导师,博士;王克彩(通讯作者),吉林大学商学与管理学院博士研究生;卢晓璇,吉林大学商学与管理学院硕士研究生;姜鹄,吉林大学商学与管理学院本科生。
  • 基金资助:
    国家自然科学基金项目(72072069;72091315);吉林省教育厅人文社会科学研究重大项目(JJKH20241358SK)。

AI Adoption, Dynamic Capabilities and the New Quality Productivity of Manufacturing Enterprises

Guo Runping, Wang Kecai, Lu Xiaoxuan, Jiang Hu   

  1. School of Business and Management, Jilin University, Changchun 130012
  • Received:2024-08-20 Published:2025-12-17

摘要: 人工智能(AI)是新质生产力的重要引擎,AI采用对制造业企业构建动态能力从而提升新质生产力发展水平具有重要意义,然而,鲜有研究从动态能力视角深入分析AI采用对制造业企业新质生产力的作用机理。鉴于此,本文基于动态能力理论,以2015—2021年中国A股上市制造业企业为样本,探讨了AI采用对制造业企业新质生产力的影响,并进一步考察了动态能力不同维度(创新能力、适应能力和吸收能力)在其中的中介作用,以及市场竞争强度的调节作用。研究结果表明:①AI采用对制造业企业新质生产力发展水平的提升具有显著正向促进作用,经过多项稳健性检验后结果依旧成立;②动态能力在AI采用与制造业企业新质生产力关系之间具有中介作用;③市场竞争强度正向调节AI采用与制造业企业新质生产力之间的关系;④市场竞争强度正向调节创新能力对制造业企业新质生产力的作用,负向调节吸收能力对制造业企业新质生产力的作用,在适应能力与制造业企业新质生产力之间不具有显著调节作用。研究结论有助于系统地揭示AI采用对制造业企业新质生产力作用机理的“黑箱”,助推动态能力理论研究向AI情境延伸,增进对动态能力不同维度的作用边界理解,丰富和拓展制造业企业新质生产力前因研究,同时也为我国制造业企业培育和发展新质生产力提供相应的对策建议。

关键词: AI采用, 新质生产力, 动态能力, 市场竞争强度, 制造业企业

Abstract: Artificial Intelligence (AI) is an important engine of the new quality productivity. AI adoption is of great significance for manufacturing enterprises to build dynamic capabilities and thereby enhance the new quality productivity. However, few studies have deeply analyzed the mechanism of AI adoption acting on the new quality productivity of manufacturing enterprises from the perspective of dynamic capabilities. Therefore, this paper, based on the theory of dynamic capabilities, uses the data of manufacturing enterprises listed on China’s A-share market from 2015 to 2021 to empirically analyze the impact of AI adoption on the new quality productivity of manufacturing enterprises, and examines the mediating role of the different dimensions of dynamic capabilities and the moderating role of market competition intensity. The research findings are as follows: (1) Al adoption significantly and positively enhances the new quality productivity level of manufacturing enterprises, with the results remaining robust after multiple robustness tests; (2) Dynamic capabilities mediate the relationship between AI adoption and the new quality productivity of manufacturing enterprises; (3) Market competition intensity plays positive moderating roles among AI adoption and the new quality productivity of manufacturing enterprises;(4) Market competition intensity exerts differential moderating effects: it positively moderates the association between innovation capability and the new quality productivity in manufacturing enterprises, negatively moderates the relationship between absorptive capacity and the new quality productivity in manufacturing enterprises, while demonstrating no significant moderating effect on the linkage between adaptive capability and new quality productivity. The research findings contribute to a deeper understanding of the mechanisms through which AI influences new quality productive forces in manufacturing enterprises, extend the theoretical exploration of dynamic capability into AI-driven contexts, deepen the understanding of the boundaries of different dynamic capability dimensions, and enrich the antecedent research on the new quality productivity of manufacturing enterprises. Furthermore, this study offers actionable strategies for Chinese manufacturing enterprises to cultivate and enhance their new quality productive forces.

Key words: AI adoption, new quality productivity, dynamic capabilities, market competition intensity, manufacturing enterprises