管理评论 ›› 2025, Vol. 37 ›› Issue (4): 3-16.

• 经济与金融管理 •    

碳达峰约束下中国工业隐含碳流动网络结构及演化

王兆华1,2,3, 王烁涵1, 李浩1,2,3, 王淞4, 张爽5   

  1. 1. 北京理工大学经济学院, 北京 100081;
    2. 数字经济与政策智能工业和信息化部重点实验室, 北京 100081;
    3. 可持续发展与智能决策研究中心, 北京 100081;
    4. 中国社会科学院拉丁美洲研究所, 北京 100007;
    5. 山东科技大学经济管理学院, 青岛 266590
  • 收稿日期:2023-06-06 发布日期:2025-05-06
  • 作者简介:王兆华,北京理工大学经济学院教授,博士生导师,博士;王烁涵,北京理工大学经济学院硕士研究生;李浩(通讯作者),北京理工大学经济学院副教授,博士生导师,博士;王淞,中国社会科学院拉丁美洲研究所助理研究员,博士;张爽,山东科技大学经济管理学院博士研究生。
  • 基金资助:
    国家自然科学基金创新研究群体项目(72321002);国家自然科学基金专项项目(72141302);教育部哲学社会科学重大课题(21JZD027);国家自然科学基金青年项目(72104023)。

The Structure and Evolution of Industrial Embodied Carbon Emission Flow Network in China under the Constraint of Carbon Peaking

Wang Zhaohua1,2,3, Wang Shuohan1, Li Hao1,2,3, Wang Song4, Zhang Shuang5   

  1. 1. School of Economics, Beijing Institute of Technology, Beijing 100081;
    2. Ministry of Industry and Information Technology Key Laboratory of Digital Economy and Policy Intelligence, Beijing 100081;
    3. Center for Sustainable Development and Smart Decision, Beijing Institute of Technology, Beijing 100081;
    4. Institute of Latin American Studies, Chinese Academy of Social Sciences, Beijing 100007;
    5. School of Economics and Management, Shandong University of Science and Technology, Qingdao 266590
  • Received:2023-06-06 Published:2025-05-06

摘要: 工业生产过程上下游行业之间高度相关联,厘清行业间的隐含碳流动规律对协同推动碳减排、实现工业碳达峰具有重要意义。本文在基于GRAS法编制2025年和2030年中国投入产出表的基础上,利用环境扩展的投入产出模型和社会网络分析方法揭示了2010—2030年中国工业行业内部以及与工业生产过程上下游的隐含碳流动网络结构与演变特征。研究结果表明,2010—2030年电力行业隐含碳排放呈快速上升趋势,石化、化工、非金属矿物制品和冶金行业的隐含碳排放降幅在8%~30%之间;在工业行业中,化工、非金属矿物制品和冶金是主要的隐含碳消费中心,电力、化工与专用设备制造是主要的隐含碳供给中心;电力、化工和专用设备制造承担了隐含碳流动网络中40%的中介作用。在碳达峰目标约束下,隐含碳网络中心逐渐向第三产业转移,电力、服务和交通成为隐含碳转移过程中的重要“桥梁”行业。

关键词: 工业行业, 碳达峰, 隐含碳流动, 环境扩展的投入产出模型, 网络结构

Abstract: The upstream and downstream of the industrial production process are highly correlated, so changing the existing production process is bound to bring about transformations in the whole industrial system. Therefore, in order to achieve the carbon peak in the industrial sector, it is necessary to study the embodied carbon emission flow relationship between different industries to promote carbon emission reduction collaboratively. In this paper, we compile China’s input-output tables of 2025 and 2030 based on GRAS method and use expanded environment input-output model (EEIO) and social network analysis method (SNA) to identify the characteristics of the structure and evolution of the embodied carbon emission flow networks of China’s industrial chain during 2010 to 2030. The results show that during 2010 to 2030, the embodied carbon emissions of the power sector show a rapid rising trend, while those of petrochemical, chemical, non-metallic mineral products, smelting and pressing of mental decrease between 8% and 30%. As for the perspective of network structure, chemical, non-metallic mineral products and mental smelting and pressing sectors are the main embodied carbon “importers”, while electric power, chemical and special equipment manufacturing sectors are the main embodied carbon “suppliers”. Electric power sector, chemicals and specialized equipment manufacturing contribute 40% of the intermediation capacity in embodied carbon emission network. Under the constraint of carbon peak target, the center of embodied carbon network is gradually transferred to the tertiary industry, and electric power, service and transportation sectors become important “bridge” in the process of embodied carbon transfer.

Key words: industrial sectors, carbon peaking, embodied carbon emission flow, EEIO model, network structure