[1] Tetlock P. C. Giving Content to Investor Sentiment:The Role of Media in the Stock Market[J]. The Journal of Finance, 2007,62(3):1139-1168 [2] Tumasjan A., Sprenger T. O., Sandner P. G., et al. Predicting Elections with Twitter:What 140 Characters Reveal about Political Sentiment[C]. Fourth International AAAI Conference on Weblogs and Social Media, 2010 [3] 金秀,姜尚伟,苑莹.基于股吧信息的投资者情绪与极端收益的可预测性研究[J].管理评论, 2018,30(7):16-25 Jin X., Jiang S. W., Yuan Y. Investor Sentiment from Guba Messages and the Predictability of Stock Extreme Returns[J]. Management Review, 2018,30(7):16-25 [4] 龙文,毛元丰,管利静,等.财经新闻的话题会影响股票收益率吗?——基于行业板块的研究[J].管理评论, 2019,31(5):18-27 Long W., Mao Y. F., Guan L. J., et al. Can Topics in Financial News Impact the Return of Stock Market?-A Research Based on Market Segment[J]. Management Review, 2019,31(5):18-27 [5] Feuerriegel S., Gordon J. Long-term Stock Index Forecasting Based on Text Mining of Regulatory Disclosures[J]. Decision Support Systems, 2018,112:88-97 [6] 郝凡浩,王铁男,赵超.新产品公告与股票投资者反应——基于Bass模型的投资者行为模型[J].管理评论, 2019,31(1):48-61 Hao F. H., Wang T. N., Zhao C. New Product Announcements and Stock Investor Reactions:A Behavioral Model Based on Bass Model[J]. Management Review, 2019,31(1):48-61 [7] Pettenuzzo D., Sabbatucci R., Timmermann A. Cash Flow News and Stock Price Dynamics[J]. The Journal of Finance, 2020,75(4):2221-2270 [8] Crego J. A. Why does Public News Augment Information Asymmetries?[J]. Journal of Financial Economics, 2020,137(1):72-89 [9] Bollen J., Mao H., Zeng X. J. Twitter Mood Predicts the Stock Market[J]. Journal of Computational Science, 2011,2(1):1-8 [10] Jacobsen B., Marshall B. R., Visaltanachoti N. Stock Market Predictability and Industrial Metal Returns[J]. Management Science, 2019,65(7):3026-3042 [11] Kong A., Zhu H. Predicting Trend of High Frequency CSI 300 Index Using Adaptive Input Selection and Machine Learning Techniques[J]. Journal of Systems Science and Information, 2018,6(2):120-133 [12] Wang S. Y. TEI@I:A New Methodology for Studying Complex Systems[C]. The International Workshop on Complexity Science, Tsukuba, Japan, 2004 [13] 汪寿阳,余乐安,黎建强. TEI@I方法论及其在外汇汇率预测中的应用[J].管理学报, 2007,4(1):21-27 Wang S. Y., Yu L. A., Li J. Q. TEI@I Methodology and Its Application to Exchange Rates Prediction[J]. Chinese Journal of Management, 2007,4(1):21-27 [14] 张茜,吴超,乔晗,等.基于TEI@I方法论的中国季播电视综艺节目收视率预测[J].系统工程理论与实践, 2016,36(11):2905-2914 Zhang Q., Wu C., Qiao H., et al. Forecasting Audience Ratings of China's Seasonal Entertainment TV Shows Based on TEI@I Methodology[J]. Systems Engineering-Theory&Practice, 2016,36(11):2905-2914 [15] 周桦,卢志源,郑敏.基于TEI@I方法的中国保险业保费收入预测[J].管理评论, 2020,32(7):166-179 Zhou H., Lu Z. Y., Zheng M. Forecasting Premium Income of China's Insurance Industry Based on TEI@I Methodology[J]. Management Review, 2020,32(7):166-179 [16] 王会娟,陈红佳,高思琴,等.基于TEI@I方法论的玉米期货价格预测研究[J].管理评论, 2020,32(7):293-301 Wang H. J., Chen H. J., Gao S. Q., et al. Forecasting Corn Futures Prices Based on TEI@I Methodology[J]. Management Review, 2020,32(7):293-301 [17] Lea C., Flynn M. D., Vidal R., et al. Temporal Convolutional Networks for Action Segmentation and Detection[C]. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017 [18] Deng S., Zhang N., Zhang W., et al. Knowledge-Driven Stock Trend Prediction and Explanation via Temporal Convolutional Network[C]. In Companion Proceedings of the 2019 World Wide Web Conference, 2019 [19] Liu Y., Dong H., Wang X., et al. Time Series Prediction Based on Temporal Convolutional Network[C]. In 2019 IEEE/ACIS 18th International Conference on Computer and Information Science, 2019 [20] Qiu G., Liu B., Bu J., et al. Expanding Domain Sentiment Lexicon through Double Propagation[C]. In Twenty-First International Joint Conference on Artificial Intelligence, 2009 [21] Lu Y., Castellanos M., Dayal U., et al. Automatic Construction of a Context-aware Sentiment Lexicon:An Optimization Approach[C]. In Proceedings of the 20th International Conference on World Wide Web, 2011 [22] Zhang J., Peng Q. Constructing Chinese Domain Lexicon with Improved Entropy Formula for Sentiment Analysis[C]. In 2012 IEEE International Conference on Information and Automation, IEEE, 2012 [23] Mahyoub F. H. H., Siddiqui M. A., Dahab M. Y. Building an Arabic Sentiment Lexicon Using Semi-Supervised Learning[J]. Journal of King Saud University-Computer and Information Sciences, 2014,26(4):417-424 [24] Tang D., Wei F., Qin B., et al. Building Large-Scale Twitter-Specific Sentiment Lexicon:A Representation Learning Approach[C]. In Proceedings of Coling 2014, the 25th International Conference on Computational Linguistics:Technical Papers, 2014 [25] Zhang D., Xu H., Su Z., et al. Chinese Comments Sentiment Classification Based on word2vec and SVMperf[J]. Expert Systems with Applications, 2015,42(4):1857-1863 [26] Nuno O., Paulo C., Nelson A. Stock Market Sentiment Lexicon Acquisition Using Microblogging Data and Statistical Measures[J]. Decision Support Systems, 2016,85(C):62-73 [27] Hao Z., Cai R., Yang Y., et al. A Dynamic Conditional Random Field Based Framework for Sentence-Level Sentiment Analysis of Chinese Microblog[C]. In 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), IEEE, 2017 [28] Wang Z., Qin S. A Sentiment Analysis Method of Chinese Specialized Field Short Commentary[C]. In 20173rd IEEE International Conference on Computer and Communications, IEEE, 2017 [29] Vinyals O., Toshev A., Bengio S., et al. Show and Tell:A Neural Image Caption Generator[C]. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015 [30] 刘相臣,丁崇明.近百年现代汉语否定副词研究述论[J].江西师范大学学报(哲学社会科学版), 2014,47(6):91-100 Liu X. C., Ding C. M. A Review of the Researches of Modern Chinese Negative Adverbs in the Recent 100 Years[J]. Journal of Jiangxi Normal University (Social Sciences), 2014,47(6):91-100 |