管理评论 ›› 2024, Vol. 36 ›› Issue (3): 246-257.

• 公共管理 • 上一篇    

突发公共卫生事件下的在线社交媒体公众情绪挖掘

宋慎铭1, 王琛2, 詹东远3   

  1. 1. 中国航空研究院, 北京 100012;
    2. 清华大学工业工程系, 北京 100084;
    3. 伦敦大学学院管理学院, 伦敦 E145AA
  • 收稿日期:2021-08-09 发布日期:2024-04-24
  • 作者简介:宋慎铭,中国航空研究院工程师,博士;王琛(通讯作者),清华大学工业工程系副教授,博士;詹东远,伦敦大学学院管理学院助理教授,博士。
  • 基金资助:
    国家自然科学基金重大项目(72192824);国家自然科学基金面上项目(71871128)。

Online Social Media Public Emotions Mining during a Public Health Emergency

Song Shenming1, Wang Chen2, Zhan Dongyuan3   

  1. 1. Chinese Aeronautical Establishment, Beijing 100012;
    2. Department of Industrial Engineering, Tsinghua University, Beijing 100084;
    3. School of Management, University College London, London E145AA
  • Received:2021-08-09 Published:2024-04-24

摘要: 在线社交媒体是突发公共卫生事件中传播信息和表达情感的重要渠道,洞察公众对新闻的情绪反应可以帮助公共卫生部门制定有效的风险沟通策略。本研究应用自然语言处理方法,对在线社交媒体新闻进行内容分类,并识别公众评论所表达的情绪,提出了适用于突发公共卫生事件的在线社交媒体公众情绪挖掘方法。具体而言,本文以新冠疫情为案例,以微博平台为数据载体,分析三个具有代表性的官方媒体微博账号中有关疫情的新闻,识别出了8类内容,包括官方新闻发布、国内疫情进展、情感支持、新冠肺炎诊疗信息等。本文基于普拉切克(Plutchik)情绪框架,通过众包问卷和情绪词典构建了用户评论情绪的判别模型,进一步分析了不同新闻内容在疫情生命周期各阶段(发作期、遏制期、恢复期)对公众情绪的影响。研究发现,通过强调特定类型的风险信息可以调节公众情绪、提高公众风险意识,为风险沟通策略分析提供了实证基础。

关键词: 突发公共卫生事件, 在线社交媒体, 新闻内容分类, 情绪识别, 风险沟通

Abstract: Online social media is a critical channel for regulators to disseminate information and for the public to express feelings during public health emergencies. Understanding public’s emotions in response to different news can help the public health department develop effective risk communication strategies. This study applies natural language processing methods to categorize social media news, and identify public emotions expressed in the corresponding news comments by proposing a method for mining public emotions on online social media during public health emergencies. Specifically, taking the recent COVID-19 pandemic as a case, this study adopts word embedding and clustering to analyze the epidemic-related news from three representative official Weibo accounts, and identifies eight categories of the news contents, including official news release, domestic epidemic updates, emotional support, transportation notification for tracking, treatment information, etc. Based on the Plutchick’s emotion framework, this study builds a discriminant model to classify and rate emotions expressed by a Weibo comment through crowdsourcing questionnaires and an emotion dictionary. Furthermore, this study analyzes the impact of different news contents on public emotions and the correlation between emotions during different stages of the epidemic life cycle (the prodromal, outbreak, containment, and recovery stages). The study reveals the effectiveness of emphasizing certain risk information to nudge public emotions and increase risk awareness, providing empirical basis for risk communication strategy analysis.

Key words: public health emergency, online social media, news content categorization, emotion identification, risk communication