管理评论 ›› 2023, Vol. 35 ›› Issue (7): 112-121.

• 创新与创业管理 • 上一篇    下一篇

数据要素赋能、研发决策与创新绩效——来自中国工业的经验证据

宋炜, 曹文静, 周勇   

  1. 西安建筑科技大学管理学院, 西安 710055
  • 收稿日期:2021-05-13 出版日期:2023-07-28 发布日期:2023-08-24
  • 通讯作者: 宋炜(通讯作者),西安建筑科技大学管理学院副教授,博士生导师,博士
  • 作者简介:曹文静,西安建筑科技大学管理学院硕士研究生;周勇,西安建筑科技大学管理学院教授,博士生导师,博士。
  • 基金资助:
    国家社会科学基金西部项目(21XJL004)。

Data Element Empowerment, R&D Decision and Innovation Performance——Empirical Evidence from China Industry

Song Wei, Cao Wenjing, Zhou Yong   

  1. School of Management, Xi'an University of Architecture and Technology, Xi'an 710055
  • Received:2021-05-13 Online:2023-07-28 Published:2023-08-24

摘要: 新一轮科技革命和产业变革决定了创新绩效不仅取决于数据要素赋能引致的要素配置效率改善,同时也在很大程度上受到研发决策的影响。本文利用2005-2018年中国工业企业面板数据估计了数据要素赋能和研发决策对创新绩效的效应。结果发现:随着数据要素增强型赋能对传统要素边际生产率大幅的改善,以追求互补性创新资源和专用性高端资产为动机的探索型研发决策能够显著提升创新绩效。数据要素偏向型赋能提高了传统要素的高端化配置效率,以吸纳数据要素能级为目标推动传统要素实现高端化配置的利用型研发决策有助于创新水平的提升,对创新绩效的改善具有显著的正向效应。上述发现具有深刻的政策含义:创新绩效的提升不仅需要加强数据要素赋能的延展性,同时还需要畅通赋能的传导渠道,完善研发决策的顶层统筹规划和市场机制设计,让研发决策发挥数据要素赋能的引领和导向作用。

关键词: 数据要素增强(偏向)型赋能, 探索(利用)型研发决策, 创新绩效, 工业全要素生产率

Abstract: The new round of technological revolution and industrial reform determine that innovation performance depends not only on the improvement of factor allocation efficiency caused by data factor empowerment, but also on R&D decisions to a great extent. Using China's industrial panel data from 2005 to 2018, this paper estimates the effects of data element empowerment and R&D decision-making on innovation performance. The results show that with the significant improvement of data factor enhanced empowerment on the marginal productivity of traditional factors, exploratory R&D decisions motivated by the pursuit of complementary innovation resources and dedicated high-end assets can significantly improve innovation performance. The biased empowerment of data elements improves the high-end allocation efficiency of traditional elements. Aiming at absorbing the energy level of data elements, promoting the utilization R&D decision of high-end allocation of traditional elements contributes to the improvement of innovation level and has a significant positive effect on the improvement of innovation performance. The above findings have profound policy implications:to improve innovation performance, in addition to strengthening the scalability of data element empowerment, it also depends on a greater extent on unblocking the transmission channel of empowerment, improving the top-level overall planning and market mechanism design of R&D decision-making, so that R&D decision-making can play the leading and guiding role of data element empowerment.

Key words: data element enhanced (biased) empowerment, exploration (utilization) R&D decision, innovation performance, industrial total factor productivity