[1] 江若然,张玲玲.社交属性网下基于链路预测及节点度的推荐算法[J].管理评论, 2019,31(2):119-129 [2] 姜祎盼,张文,李健,等.基于异构网络元路径的App推荐算法[J].管理评论, 2020,32(4):160-170 [3] Abhadiomhen S. E., Nzeh R. C., Ganaa E. D., et al. Supervised Shallow Multi-Task Learning:Analysis of Methods[J]. Neural Processing Letters, 2022,54(3):2491-2508 [4] Caruana R. A. Multitask Learning:A Knowledge-Based Source of Inductive Bias[J]. Machine Learning Proceedings, 1993,10(1):41-48 [5] Duong L., Cohn T., Bird S., et al. Low Resource Dependency Parsing:Cross-Lingual Parameter Sharing in a Neural Network Parser[C]. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2:Short Papers), 2015 [6] Misra I., Shrivastava A., Gupta A., et al. Cross-Stitch Networks for Multi-task Learning[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016 [7] Chen L., Chen D., Yang F., et al. A Deep Multi-task Representation Learning Method for Time Series Classification and Retrieval[J]. Information Sciences, 2021,555:17-32 [8] Zhao S., Zhao T., Yang H., et al. STELLAR:Spatial-Temporal Latent Ranking for Successive Point-of-Interest Recommendation[C]. Thirtieth AAAI Conference on Artificial Intelligence, 2016 [9] Xie M., Yin H., Wang H., et al. Learning Graph-Based POI Embedding for Location-Based Recommendation[C]. Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, 2016 [10] 鲜学丰,陈晓杰,赵朋朋,等.基于上下文感知和个性化度量嵌入的下一个兴趣点推荐[J].计算机工程与科学, 2018,40(4):616-625 [11] 张奥雅,石美惠,申德荣,等.融合区域与朋友影响的下一兴趣点推荐[J/OL].计算机科学与探索:1-11[2021-02-06]. http://kns.cnki.net/kcms/detail/11.5602.tp.20201105.1051.012.html [12] 柴瑞敏,殷臣,孟祥福,等.基于时空循环神经网络的下一个兴趣点推荐方法[J].智能系统学报, 2021,16(3):407-415 [13] 王立,张谧.基于LSTM的POI个性化推荐框架[J].计算机系统应用, 2018,27(12):56-61 [14] Bansal T., Belanger D., McCallum A. Ask the GRU:Multi-Task Learning for Deep Text Recommendations[C]. Proceedings of the 10th ACM Conference on Recommender Systems, 2016 [15] Caruana R. Multitask Learning[J]. Machine Learning, 1997,28(1):41-75 [16] Gehring J., Auli M., Grangier D., et al. Convolutional Sequence to Sequence Learning[C]. International Conference on Machine Learning, 2017 [17] Li G., Chen Q., Zheng B., et al. Group-Based Recurrent Neural Networks for POI Recommendation[J]. ACM Transactions on Data Science, 2020,1(1):1-18 [18] Burges C., Shaked T., Renshaw E., et al. Learning to Rank Using Gradient Descent[C]. Proceedings of the 22nd International Conference on Machine Learning, 2005 [19] Doon R., Rawat T. K., Gautam S. Cifar-10 Classification Using Deep Convolutional Neural Network[C]. 2018 IEEE Punecon, 2018 [20] Frankle J., Carbin M. The Lottery Ticket Hypothesis:Finding Sparse, Trainable Neural Networks[C]. The 7th International Conference on Learning Representations, 2018 [21] Jacobs R. A., Jordan M. I., Nowlan S. J., et al. Adaptive Mixtures of Local Experts[J]. Neural Computation, 1991,3(1):79-87 [22] Eigen D., Puhrsch C., Fergus R. Depth Map Prediction from a Single Image Using a Multi-Scale Deep Network[C]. Advances in Neural Information Processing Systems, 2014 [23] Shazeer N., Mirhoseini A., Maziarz K., et al. Outrageously Large Neural Networks:The Sparsely-Gated Mixture-of-Experts Layer[C]. International Conference on Learning Representations, 2017 [24] Bengio Y., Courville A., Vincent P. Representation Learning:A Review and New Perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(8):1798-1828 [25] Cho E., Myers S. A., Leskovec J. Friendship and Mobility:User Movement in Location-Based Social Networks[C]. Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2011 [26] Yin H., Cui B., Zhou X., et al. Joint Modeling of User Check-In Behaviors for Real-Time Point-of-Interest Recommendation[J]. ACM Transactions on Information Systems (TOIS), 2016,35(2):1-44 [27] Ma J., Zhao Z., Yi X., et al. Modeling Task Relationships in Multi-Task Learning with Multi-Gate Mixture-of-Experts[C]. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery&Data Mining, 2018 [28] Zhao P., Luo A., Liu Y., et al. Where to Go Next:A Spatio-Temporal Gated Network for Next POI Recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2020,(1):1-1 [29] Liu Q., Wu S., Wang L., et al. Predicting the Next Location:A Recurrent Model with Spatial and Temporal Contexts[C]. Thirtieth AAAI Conference on Artificial Intelligence, 2016 [30] Li R., Shen Y., Zhu Y. Next Point-of-Interest Recommendation with Temporal and Multi-level Context Attention[C]. 2018 IEEE International Conference on Data Mining (ICDM), IEEE, 2018 [31] Manotumruksa J., Macdonald C., Ounis I. A Contextual Attention Recurrent Architecture for Context-Aware Venue Recommendation[C]. The 41st International ACM SIGIR Conference on Research&Development in Information Retrieval, 2018 |