[1] 王星云,左敏,肖克晶,等. 基于BP神经网络的食品安全抽检数据挖掘[J]. 食品科学技术学报, 2016,34(6):85-90 [2] 游清顺,王建新,张秀宇,等. 基于支持向量机的食品安全抽检数据分析方法[J]. 软件工程, 2019,22(2):29-31 [3] Liu Y., Li X., Wang J., et al. Pattern Discovery from Big Data of Food Sampling Inspections Based on Extreme Learning Machine[C]. International Conference on Research and Practical Issues of Enterprise Information Systems, Springer, Cham, 2017 [4] Zhang R., Zhou L., Zuo M., et al. Prediction of Dairy Product Quality Risk Based on Extreme Learning Machine[C]. International Conference on Data Science & Business Analytics, IEEE Computer Society, 2018 [5] Khosa I., Pasero E., Defect Detection in Food Ingredients Using Multilayer Perceptron Neural Network[C]. 2014 World Symposium on Computer Applications & Research (WSCAR), 2014 [6] 陈恺. 基于数据驱动的食品安全预警分析方法与应用[D]. 北京化工大学博士学位论文, 2015 [7] 陶新民,郝思媛,张冬雪,等. 不均衡数据分类算法的综述[J]. 重庆邮电大学学报(自然科学版), 2013,25(1):101-110 [8] Chawla N. V., Bowyer K. W., Hall L. O., et al. SMOTE:Synthetic Minority Over-sampling Technique[J]. Journal of Artificial Intelligence Research, 2002,16(1):321-357 [9] 覃朗,朱建军,衣柏衡,等. 非均衡数据下基于信息增益的SMOTE改进SVM模型研究[J]. 中国管理科学, 2016,24(S1):128-136 [10] 薛薇. 非平衡数据集的改进SMOTE再抽样算法[J]. 统计研究, 2012,29(6):95-98 [11] 马景义,胡迪,孙枭枭. 不平衡数据处理的新方法——基于样本相似度的少数类合成法[J]. 数理统计与管理, 2015,34(5):809-820 [12] 衣柏衡,朱建军,李杰. 基于改进SMOTE的小额贷款公司客户信用风险非均衡SVM分类[J]. 中国管理科学, 2016,24(3):24-30 [13] Han X., Cui R., Lan Y., et al. A Gaussian Mixture Model Based Combined Resampling Algorithm for Classification of Imbalanced Credit Data Sets[J]. International Journal of Machine Learning and Cybernetics, 2019,10(12):3687-3699 [14] 夏利宇,何晓群. 基于重抽样法处理不平衡问题的信用评级模型[J]. 管理评论, 2020,32(3):75-84 [15] 熊冰妍,王国胤,邓维斌. 基于样本权重的不平衡数据欠抽样方法[J]. 计算机研究与发展, 2016,53(11):2613-2622 [16] 牛壮,李凤莲,张雪,等. 改进欠抽样方法及其在非平衡数据集分类中的应用[J]. 计算机工程, 2019,45(6):218-224 [17] Ofek N., Rokach L., Stern R., et al. Fast-CBUS:A Fast Clustering-Based Undersampling Method for Addressing the Class Imbalance Problem[J]. Neurocomputing, 2017,243(Jun 21):88-102 [18] Hu J., Li Y., Yan W. X., et al. KNN-based Dynamic Query-driven Sample Rescaling Strategy for Class Imbalance Learning[J]. Neurocomputing, 2016,191(May 26):363-373 [19] 林宇,黄迅,徐凯. 基于RU-SMOTE-SVM的金融市场极端风险预警研究[J]. 预测, 2013,32(4):15-20 [20] 石洪波,陈雨文,陈鑫. SMOTE过采样及其改进算法研究综述[J]. 智能系统学报, 2019,14(6):1073-1083 [21] 刘洋. 基于不平衡数据集的机器学习算法研究[J]. 统计与决策, 2019,35(12):19-21 [22] 闫慈,田翔华,阿拉依·阿汗,等. 基于重采样技术在医学不平衡数据分类中的应用研究[J]. 中国卫生统计, 2018,35(2):177-180 [23] 魏瑾瑞,吕晓云. Logistic模型对非平衡数据的敏感性:测度、修正与比较[J]. 统计研究, 2016,33(2):79-85 [24] 罗艳虹,李治,余红梅,等. 基于代价敏感性和概率校准的先天性心脏病概率预测模型研究[J]. 中国卫生统计, 2019,36(1):36-39 [25] Thai-Nghe N., Gantner Z. Cost-Sensitive Learning Methods for Imbalanced Data[C]. International Joint Conference on Neural Networks, 2010 [26] Jin X., Xu Z., Yu Z., et al. Cost-sensitive Semi-supervised Selective Ensemble Model for Customer Credit Scoring[J]. Chinese Journal of Management Science, 2020,189(C):105118 [27] Wong M. L., Seng K., Wong P. K. Cost-sensitive Ensemble of Stacked Denoising Autoencoders for Class Imbalance Problems in Business Domain[J]. Expert Systems with Applications, 2020,141(Mar.):112918.1-112918.18 [28] Gan D., Shen J., An B., et al. Integrating TANBN with Cost Sensitive Classification Algorithm for Imbalanced Data in Medical Diagnosis[J]. Computers & Industrial Engineering, 2020,140(Feb.):106266.1-106266.9 [29] 郭海湘,黄媛玥,顾明赟,等. 基于自适应多分类器系统的甲状腺疾病诊断方法研究[J]. 系统工程理论与实践, 2018,38(8):2123-2134 [30] 马景义,吴喜之,谢邦昌. 拟自适应分类随机森林算法[J]. 数理统计与管理, 2010,29(5):805-811 [31] Timothy M. Shearman J. Varner M., et al. Modelling Post-fire Tree Mortality:Can Random Forest Improve Discrimination of Imbalanced Data?[J]. Ecological Modelling, 2019,414(15 December):108855 [32] Ma Y., Hou Y., Liu Y., et al. Research of Food Safety Risk Assessment Methods Based on Big Data[C]. IEEE International Conference on Big Data Analysis, 2016 [33] 张强,何乐平. 基于支持向量机的治安高危人员风险预警方法[J]. 管理评论, 2016,28(11):245-251 [34] 于焕杰,杜子芳. 基于随机森林的企业监管方法研究[J]. 管理世界, 2017,(9):180-181 [35] Cao P., Zhao D., Osmar Z. An Optimized Cost-sensitive SVM for Imbalanced Data Learning[C]. Pacific-asia Conference on Knowledge Discovery & Data Mining, Springer Berlin Heidelberg, 2013 [36] Yan Q., Xia S., Meng F. Optimizing Cost-Sensitive SVM for Imbalanced Data:Connecting Cluster to Classification[EB/OL]. http://doi.org/10.48550/arXiv.1702.01504,2017-02-06 [37] Jiawei H., Micheline K., Jian P. 著, 范明,孟小峰,译. 数据挖掘概念与技术[M]. 北京:机械工业出版社, 2012 [38] 邓乃扬,田英杰. 支持向量机:理论、算法与拓展[M]. 北京:科学出版社, 2009 [39] 邓乃扬,田英杰. 数据挖掘中的新方法[M]. 北京:科学出版社, 2004 [40] Deng N., Tian Y., Zhang C. Support Vector Machines. Optimization Based Theory, Algorithms, and Extensions[M]. Boca Raton, Florida:CRC Press, 2012 [41] Breiman, Leo. Random Forests[J]. Machine Learning, 2001,45(1):5-32 [42] Cutler A., Cutler D. R., Stevens J. R. Random Forests[M]//Cutler A., Cutler D. R., Stevens J. R.(Eds.). Ensemble Machine Learning. Boston, MA:Springer, 2012 [43] 李建更,高志坤. 随机森林针对小样本数据类权重设置[J]. 计算机工程与应用, 2009,45(26):131-134 |