[1] Zong W., Huang G. B., Chen Y. Weighted Extreme Learning Machine for Imbalance Learning[J]. Eeuro-computing, 2013,101(3):229-242 [2] Alberto F., María J. J., Francisco H. Hierarchical Fuzzy Rule Based Classification Systems with Genetic Rule Selection for Imbalanced Data-sets[J]. International Journal of Approximate Reasoning, 2009,50(8):561-577 [3] Hungyuan C., Chihhsiang H., Chechang H. Support Vector Machines Using Bayesian-based Approach in the Issue of Unbalanced Classifications[J]. Expert Systems with Applications, 2011,38(6):11447-11452 [4] Folino G., Pisani F. S. Evolving Meta-ensemble of Classifiers for Handling Incomplete and Unbalanced Datasets in the Cyber Security Domain[J]. Applied Soft Computing, 2016,47(2):179-190 [5] Miriam R. S., Lee L. L. Pruning Methods to MLP Neural Networks Considering Proportional Apparent Error Rate for Classification Problems with Unbalanced Data[J]. Measurement, 2014,56(5):88-94 [6] Silvia C., Valentina C., Marco V. A Method for Resampling Imbalanced Datasets Inbinary Classification Tasks for Real-world Problems[J]. Neurocomputing, 2014,135(8):32-41 [7] Ganesh S. G., Vadlamani R. A Novel Hybrid Under Sampling Method Formining Unbalanced Datasets in Banking and Insurance[J]. Engineering Applications of Artificial Intelligence, 2015,37(10):368-377 [8] Ammar N., Hadi J., Mariette A. Kermin SVM for Imbalanced Datasets with a Case Study on Arabic Comics Classification[J]. Engineering Applications of Artificial Intelligence, 2017,59(4):59-169 [9] Lixiang D., Mengyun X., Tangbo B., et al. A New Support Vector Data Description Method for Machinery Fault Diagnosis with Unbalanced Datasets[J]. Expert Systems with Applications, 2016,64(11):239-246 [10] Fan X. N., Tang K., Weise T. Margin-Based Over-Sampling Method for Learning from Imbalanced Datasets[C]. Springer Berlin Heidelberg, 2011,66(35):309-320 [11] Tao W., Zhenxing Q., Shichao Z., et al. Cost-sensitive Classification with Inadequate Labeled Data[J]. Information Systems, 2012,37(5):508-516 [12] Chengjian X., Wenxuan Z., Wenzhi H., et al. The Situation of Waste Mobile Phone Management in Developed Countries and Development Status in China[J]. Waste Management, 2016,58(9):341-347 [13] Bukelwa N., Stephen V. F. Information Security Behaviour Profiling Framework (ISBPF) for Student Mobile Phone Users[J]. Science Direct, 2015,53(12):132-142 [14] Teresa G., Teodosio P., Covadonga G., et al. Consumer Complaint Behaviour in Telecommunications:The Case of Mobile Phone Users in Spain[J]. Telecommunications Policy, 2016,40(5):804-820 [15] Anna S., József M., Pirkko W. An Attitude-based Latent Class Segmentation Analysis of Mobile Phone Users[J]. Telematics and Informatics, 2014,31(1):209-219 [16] Victoria K., Sharmistha B. S., Raghav R. Extent of Private Information Disclosure on Online Social Network s:An Exploration of Facebook Mobile Phone Users[J]. Computers in Human Behavior, 2013,29(8):2722-2729 [17] Veronika K., Akos P., Adam M. Mobile Attachment:Separation from the Mobile Phone Induces Physiological and Behavioural Stress and Attentional Bias to Separation-related Stimuli[J]. Computers in Human Behavior, 2017,71(3):228-239 [18] Liua C. C., Chen C. H. Using Q Methodology to Explore User's Value Types on Mobile Phone Service Websites[J]. Expert Systems with Applications, 2013,40(2):5276-5283 [19] Feng L., Shaoqiong Z., Yang L. How Many, How Often, and How New? A Multivariate Profiling of Mobile App Users[J]. Journal of Retailing and Consumer Services, 2017,38(12):71-80 [20] Richard N., Frank N. A Real Generalization of Discrete AdaBoost[J]. Artificial Intelligence, 2007,171(1):25-41 [21] 胡海青,张琅,张道宏. 供应链金融视角下的中小企业信用风险评估研究——基于SVM与BP神经网络的比较研究[J]. 管理评论, 2012,24(11):70-80 [22] 郭亚伟,白治江. 基于混合重采样的非平衡数据SVM训练方法[J]. 人工智能, 2016,35(12):52-58 [23] Jungeun K., Keunho C., Gunwoo K., et al. Classification Cost:An Empirical Comparison among Traditional Classifier, Cost-Sensitive Classifier, and MetaCost[J]. Expert Systems with Applications, 2012,39(4):4013-4019 [24] 李秋洁,赵亚琴,顾洲. 代价敏感学习中的损失函数设计[J]. 控制理论与应用, 2015,32(5):689-694 [25] Lu S. H., Chiang D. A., Keh H. C., et al. Chinese Text Classification by the Naïve Bayes Classifier and the Associative Classifier with Multiple Confidence Threshold Values[J]. Knowledge-Based Systems, 2010,23(6):598-604 [26] 郑恩辉. 基于支持向量机的代价敏感数据挖掘研究与应用[D]. 浙江大学博士学位论文, 2006 [27] 贾国柱,刘圣国,王剑磊,等. 基于支持向量机的建筑企业循环经济评价研究[J]. 管理评论, 2013,25(5):11-18 [28] Dongliang W., Lili T., Yichuan Z. Smoothed Empirical Likelihood for the Youden Index[J]. Computational Statistics & Data Analysis, 2017,115(9):1-10 |