管理评论 ›› 2021, Vol. 33 ›› Issue (9): 177-186.

• 市场营销 • 上一篇    下一篇

考虑分类代价的用户换手机的分类器研究——基于数据平衡性视角

王超发1, 王树斌2, 王成军3   

  1. 1. 西安电子科技大学经济与管理学院, 西安 710126;
    2. 西安邮电大学经济与管理学院, 西安 710061;
    3. 西安建筑科技大学管理学院, 西安 710055
  • 收稿日期:2018-06-08 出版日期:2021-09-28 发布日期:2021-10-09
  • 通讯作者: 王超发(通讯作者),西安电子科技大学经济与管理学院副教授,博士
  • 作者简介:王树斌,西安邮电大学经济与管理学院讲师,博士;王成军,西安建筑科技大学管理学院教授,博士生导师,博士。
  • 基金资助:
    国家自然科学基金面上项目(71872141;51774228)。

Study on the Classifier for Mobile Phone Users Considering the Classification Cost——Based on the Perspective of Data Balance

Wang Chaofa1, Wang Shubin2, Wang Chengjun3   

  1. 1. School of Economics and Management, Xidian University, Xi'an 710126;
    2. School of Economics and Management, Xi'an University of Posts and Telecommunications, Xi'an 710061;
    3. School of Management, Xi'an University of Architecture and Technology, Xi'an 710055
  • Received:2018-06-08 Online:2021-09-28 Published:2021-10-09

摘要: 传统分类算法在处理非平衡数据时不能有效提高用户的分类效果。本文基于中国移动通信集团公司某分公司的用户数据,从数据平衡性视角出发,对判别用户是否换手机的分类器最优阈值、预期风险和分类代价之间的关系进行了实证分析。研究发现:以平衡数据集为样本对用户换手机进行分类得到的换机准确率高于原始数据集对应的换机准确率;预期风险(同一分类代价比)随着分类器阈值的增大表现出先增大后减小的趋势;对用户是否换手机的分类结果受数据平衡性和分类代价比的双重影响。研究结论能够为手机销售商和制造商完善管理方法提供决策依据。

关键词: 非平衡数据, 分类器, 分类准确率, 分类代价

Abstract: Traditional classification algorithms cannot effectively improve the classification effect of users when dealing with unbalanced data. Based on the user information data from a branch of China Mobile Communications Corporation, this study makes, from the data balance perspective, an empirical analysis on mobile phone classifier, the optimal threshold, expected risk, and the relationship between the classification of the cost. Research findings:the accuracy of mobile phone exchange is higher than that of the original data set; With the increase of the threshold value of the classifier, same classification cost ratio, the expected risk appears to increase first and then decrease; the classification result of whether the user changes the mobile phone or not is influenced by the balance of data and the set of classification cost ratio. These conclusions can provide a decision-making basis for mobile phone sellers and manufacturers to improve their management methods.

Key words: non-equilibrium data, classifier, classification accuracy, classification cost