[1] Harris F. W. How Many Parts to Make at Once[J]. Operations Research, 1990,38(6):947-950
[2] Ghare P. M., Schrader G. F. A Model for Exponentially Decaying Inventory[J]. Journal of Industrial Engineering, 1963,14(5):238-243
[3] Covert R. P., Philip G. C. An EOQ Model for Items with Weibull Distribution Deterioration[J]. AⅡE transactions, 1973,5(4):323-326
[4] Goyal S. K., Giri B. C. Recent Trends in Modelling of Deteriorating Inventory[J]. European Journal of Operational Research, 2001,134(1):1-16
[5] Bakker M., Riezebos J., Teunter R. H. Review of Inventory Systems with Deterioration Since 2001[J]. European Journal of Operational Research, 2012,221(2):275-284
[6] Janssen L., Claus T., Sauer J. Literature Review of Deteriorating Inventory Models by Key Topics from 2012 to 2015[J]. International Journal of Production Economics, 2016,182:86-112
[7] Sarkar B. An EOQ Model with Delay in Payments and Stock Dependent Demand in the Presence of Imperfect Production[J]. Applied Mathematics and Computation, 2012,218(17):8295-8308
[8] Chen S. C., Teng J. T. Retailer's Optimal Ordering Policy for Deteriorating Items with Maximum Lifetime under Supplier's Trade Credit Financing[J]. Applied Mathematical Modelling, 2014,38(15):4049-4061
[9] Wang W. C., Teng J. T., Lou K. R. Seller's Optimal Credit Period and Cycle Time in a Supply Chain for Deteriorating Items with Maximum Lifetime[J]. European Journal of Operational Research, 2014,232(2):315-321
[10] Goyal S. K. Economic Order Quantity under Conditions of Permissible Delay in Payments[J]. Journal of the Operational Research Society, 1985,36(4):335-338
[11] Sarker B. R., Jamal A. M. M., Wang S. Supply Chain Models for Perishable Products under Inflation and Permissible Delay in Payment[J]. Computers & Operations Research, 2000,27(1):59-75
[12] Teng J. T. On the Economic Order Quantity under Conditions of Permissible Delay in Payments[J]. Journal of the Operational Research Society, 2002,53(8):915-918
[13] Chang C. T. An EOQ Model with Deteriorating Items under Inflation When Supplier Credits Linked to Order Quantity[J]. International Journal of Production Economics, 2004,88(3):307-316
[14] 李明芳,王道平,李锋. 基于现金折扣和延期支付条件下变质产品的补货策略[J]. 管理评论, 2011,23(4):122-128
[15] 秦娟娟. 延期支付条件下考虑坏账影响的三阶段经济订货模型[J]. 中国管理科学, 2012,20(6):94-101
[16] 刚号,唐小我,慕银平. 延期支付下考虑应收帐款率目标的供应商最优运作策略与协调研究[J]. 管理工程学报, 2014,28(2):114-119
[17] Ting P. S. Comments on The EOQ Model for Deteriorating Items with Conditional Trade Credit Linked to Order Quantity in the Supply Chain Management[J]. European Journal of Operational Research, 2015,246(1):108-118
[18] Zhang A. X. Optimal Advance Payment Scheme Involving Fixed Per-payment Costs[J]. Omega, 1996,24(5):577-582
[19] Maiti A. K., Bhunia A. K., Maiti M. Some Inventory Problems Via Genetic Algorithms[D]. Ph. D. Thesis, Department of Mathematics. Vidyasagar University, India, 2007
[20] 桂华明. 考虑可控提前期和缺货损失的供应链费用分担策略研究[J]. 管理评论, 2014,26(1):168-176
[21] Taleizadeh A. A. An Economic Order Quantity Model for Deteriorating Item in a Purchasing System with Multiple Prepayments[J]. Applied Mathematical Modelling, 2014,38(23):5357-5366
[22] Taleizadeh A. A. An EOQ Model with Partial Backordering and Advance Payments for an Evaporating Item[J]. International Journal of Production Economics, 2014,155(5):185-193
[23] Teng J. T., Cárdenas-Barrón L. E., Chang H. J., et al. Inventory Lot-size Policies for Deteriorating Items with Expiration Dates and Advance Payments[J]. Applied Mathematical Modelling, 2016,40(19-20):8605-8616
[24] Pentico D. W., Drake M. J. The Deterministic EOQ with Partial Backordering:A New Approach[J]. European Journal of Operational Research, 2009,194(1):102-113
[25] Ghiami Y., Beullens P. Planning for Shortages? Net Present Value Analysis for a Deteriorating Item with Partial Backlogging[J]. International Journal of Production Economics, 2016,178:1-11
[26] Warburton R. D. H. EOQ Extensions Exploiting the Lambert W Function[J]. European Journal of Industrial Engineering, 2008,3(1):45-69
[27] Gambini A., Scarpello G. M., Ritelli D. Mathematical Properties of EOQ Models with Special Cost Structure[J]. Applied Mathematical Modeling, 2013,37(3):659-666
[28] Cambini A., Martein L. Generalized Convexity and Optimization:Theory and Applications[M]. Berlin:Springer Science & Business Media, 2008 |