管理评论 ›› 2025, Vol. 37 ›› Issue (6): 200-211.

• 物流与供应链管理 • 上一篇    

解析物流产业效率的驱动因素:基于三阶段DEA和fsQCA的研究

薛龙飞, 徐贤浩   

  1. 华中科技大学管理学院, 武汉 430074
  • 收稿日期:2022-05-13 发布日期:2025-07-10
  • 作者简介:薛龙飞,华中科技大学管理学院博士研究生;徐贤浩(通讯作者),华中科技大学管理学院教授,博士生导师,博士。
  • 基金资助:
    国家自然科学基金委创新研究群体科学基金(71821001);国家自然科学基金面上项目(71971095)。

Disentangling the Efficiency Drivers in the Logistics Industry: A Study Based on Three-stage DEA and fsQCA

Xue Longfei, Xu Xianhao   

  1. School of Management, Huazhong University of Science and Technology, Wuhan 430074
  • Received:2022-05-13 Published:2025-07-10

摘要: 降本增效是推动物流产业转型升级的重要力量,政府应营造有利于产业发展的环境生态,以降低产业运营成本并改善绩效结果,但如何优化产业环境生态促进效率提高是亟待回答的重要问题。本文聚焦于我国物流产业,从投入产出和组态分析的理论视角研究并识别潜在的改进机会。基于产业环境配置组态的研究框架,结合三阶段数据包络分析(DEA)/随机前沿分析(SFA)模型和模糊集定性比较分析(fsQCA)方法,量化了地区异质性和随机冲击对物流效率的影响,进而从组态视角分析了环境驱动因素与物流产业效率的关系。研究发现:(1)直接驱动因素中的政府支持、间接驱动因素中的消费能力和经济发展能够显著降低产业生产总值的冗余。(2)单个驱动因素并不构成高效率结果产生的必要条件,物流产业较高的效率是多重驱动因素共同作用的结果,存在3类有利于改善效率结果的产业环境生态。这种混合方法框架展现了良好的互补性,并从资源利用和系统整合的角度,为促进物流产业的高效发展提供了决策参考。

关键词: 物流产业, 管理效率, 产业环境生态, 三阶段DEA模型, 组态分析

Abstract: Cost reduction and efficiency enhancement are pivotal forces driving the transformation and upgrading of the logistics industry. Governments should foster an internal and external environment conducive to industry development, aiming to reduce operational costs and improve performance outcomes. However, a critical question is how to optimize the industrial ecosystem to promote efficiency. This paper focuses on China’s logistics industry and examines potential improvement opportunities from the theoretical perspectives of input-output and configuration analysis. Using a research framework based on industrial environment configuration, coupled with a three-stage Data Envelopment Analysis (DEA)/Stochastic Frontier Analysis (SFA) model and Fuzzy-set Qualitative Comparative Analysis (fsQCA) method, we quantify the impact of regional heterogeneity and random shocks on logistics efficiency. Subsequently, we analyze the relationship between environmental driving factors and logistics industry efficiency from a configuration perspective. The findings are as follows. (1) Government support as a direct driving factor, and consumer capacity and economic development as indirect driving factors, significantly reduce the redundancy in industry production value. (2) No single driving factor is necessary for achieving high efficiency; rather, high efficiency in the logistics industry results from the combined effect of multiple driving factors, with three specific industrial ecosystems conducive to improved efficiency outcomes identified. This mixed-method framework demonstrates strong complementarity, providing decision-making references from the perspectives of resource utilization and system integration to promote the efficient development of the logistics industry.

Key words: logistics industry, management efficiency, industrial ecosystem, three-stage DEA model, configuration analysis