管理评论 ›› 2024, Vol. 36 ›› Issue (8): 52-64.

• 经济与金融管理 • 上一篇    

基于二次分解和模型选择策略的港口集装箱吞吐量组合预测

梁小珍1, 赵欣1, 杨明歌1, 吴俊峰2, 邓天虎3, 田歆4,5   

  1. 1. 上海大学管理学院, 上海 200444;
    2. 上海文景信息科技有限公司, 上海 200126;
    3. 清华大学工业工程系, 北京 100084;
    4. 中国科学院大学经济与管理学院, 北京 100190;
    5. 中国科学院虚拟经济与数据科学研究中心, 北京 100190
  • 收稿日期:2021-11-26 发布日期:2024-09-03
  • 作者简介:梁小珍,上海大学管理学院副教授,硕士生导师,博士;赵欣,上海大学管理学院硕士研究生;杨明歌,上海大学管理学院副教授,硕士生导师,博士;吴俊峰,上海文景信息科技有限公司董事长、总经理;邓天虎,清华大学工业工程系长聘副教授,博士生导师,博士;田歆(通讯作者),中国科学院大学经济与管理学院教授、中国科学院虚拟经济与数据科学研究中心研究员,博士生导师,博士。
  • 基金资助:
    国家自然科学基金项目(71701122;11801352;72172145;71932002);北京市自然科学基金项目(9212020);中央高校基本科研业务费专项资金。

A Combination Forecast Method of Port Container Throughput Based on Secondary Decomposition and Model Selection Strategy

Liang Xiaozhen1, Zhao Xin1, Yang Mingge1, Wu Junfeng2, Deng Tianhu3, Tian Xin4,5   

  1. 1. School of Management, Shanghai University, Shanghai 200444;
    2. Shanghai WinJoin Information Technology Co., Ltd., Shanghai 200126;
    3. Department of Industrial Engineering, Tsinghua University, Beijing 100084;
    4. School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190;
    5. Research Center on Fictitious Economy and Data Science, Chinese Academy of Sciences, Beijing 100190
  • Received:2021-11-26 Published:2024-09-03

摘要: 准确预测港口集装箱吞吐量对于政府部门规划港口建设,港口和航运企业合理调配资源具有重要意义。已往研究往往采用单一分解方法来处理序列中的复杂特征,存在数据特征提取不完全以及预测模型选择比较盲目的问题,极大地影响了组合模型的预测效果。为此,本文引入二次分解和基于数据特征的模型选择策略,通过建立组合预测框架对港口集装箱吞吐量进行预测。首先,根据原始序列的整体特征选择一种分解方法对其进行初步分解,得到若干分量。然后,分析各分量的平稳性、季节性及复杂性等数据特征,据此选择合适的计量经济学模型进行预测或采用完全自适应噪声集合经验模态分解(CEEMDAN)方法对分量进行二次分解。接着,引入长程相关性特征,根据二次分解后子序列的平稳性、复杂性、长程相关性等再选择合适的预测模型。最后,将所有分量的预测结果集成从而得到最终的预测值。以月度预测为例,本文选取上海港和天津港集装箱吞吐量数据作为样本开展实证研究。实证结果表明,本文所提出的组合预测框架与基准模型相比具有更高的预测精度,是一种比较有前景的港口集装箱吞吐量预测工具,可以为相关政府部门、港口及航运企业提供决策参考。

关键词: 集装箱吞吐量预测, 二次分解, 数据特征分析, 模型选择, 组合预测

Abstract: Accurate prediction of port container throughput is of great significance to government planning of port construction and reasonable allocation of resources by ports and shipping enterprises. Previous studies often use a single decomposition method to deal with the complex features in the container throughput series, which results in incomplete data feature extraction and blind selection of prediction models, and greatly affects the prediction effect of the combined model. Therefore, this paper introduces the strategies of secondary decomposition and model selection based on data characteristics analysis to predict the port container throughput by establishing a combination forecast framework. Firstly, according to the overall characteristics of the original series, a decomposition method is selected to decompose it preliminarily, and several components are obtained. Then, the data characteristics of each component, such as stationarity, seasonality and complexity, are analyzed, and an appropriate econometric model is selected for prediction or the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) method is used to decompose the component. Next, the characteristic of long-range correlation is introduced, and the appropriate model for prediction is selected according to the stationarity, complexity, and long-range correlation of the sub-sequences after the secondary decomposition. Finally, the predicted values of all components are integrated to obtain the final prediction results. Taking monthly forecast as an example, the empirical study uses the container throughput data of Shanghai Port and Tianjin Port as samples. The empirical results show that the combination forecast framework proposed in this paper has higher prediction accuracy than the benchmark models, and is a promising tool for port container throughput forecasting, which can provide decision-making reference for relevant government departments, ports, and shipping enterprises.

Key words: forecast of container throughput, secondary decomposition, data characteristics analysis, model selection, combination forecast