管理评论 ›› 2020, Vol. 32 ›› Issue (8): 304-313.

• 物流与供应链管理 • 上一篇    下一篇

基于组合赋权模型的物流企业绩效评价指标体系构建研究

姜旭, 胡雪芹   

  1. 北京物资学院物流学院, 北京 101149
  • 收稿日期:2019-06-19 出版日期:2020-08-28 发布日期:2020-09-05
  • 通讯作者: 胡雪芹(通讯作者),北京物资学院物流学院硕士研究生。
  • 作者简介:姜旭,北京物资学院物流学院教授,硕士生导师,博士。
  • 基金资助:
    北京市社会科学基金重点项目(19JDGLA003)。

Construction of Performance Evaluation Index System for Logistics Enterprises Based on Combination Weighting Model

Jiang Xu, Hu Xueqin   

  1. School of Logistics, Beijing WuziUniversity, Beijing 101149
  • Received:2019-06-19 Online:2020-08-28 Published:2020-09-05

摘要: 本文以日本物流企业绩效评价指标体系、国资委《2019年企业绩效评价标准值》为基础,通过梳理国内外文献,构建了经营活动、物流活动、企业内外部环境在内的三个准则层,员工离职率等24个评价指标的评价体系。以25家5A级物流企业2018年数据为研究对象,通过组合赋权模型对G1法和BP神经网络法两种单一赋权方法进行组合,建立适应我国物流企业绩效评价的指标体系。本文研究结果表明,我国物流企业绩效评价指标体系的评价结果与物流企业发展现状基本一致。目前,研发投入不足、人才吸引能力较弱是造成传统运输型、仓储型物流企业严重落后于综合服务型物流企业的主要原因。资产回报能力和客户服务水平的差异,是造成我国5A级物流企业之间拉开差距的重要指标。

关键词: 物流企业绩效, 评价指标, 组合赋权法, BP神经网络

Abstract: Based on the performance evaluation index system of Japanese logistics companies and the SASAC's “Standard Values for Enterprise Performance Evaluation in 2019”, this paper organizes three criteria layers including business activities, logistics activities and the internal and external environment of the company by combing domestic and foreign literature. An evaluation system of 24 evaluation indicators such as employee turnover is established. Taking the 2018 data of 25 5A-level logistics companies as the research object, we combine two weighting methods (G1 method and BP neural network method) through a combined weighting model to establish an index system suitable for the performance evaluation of logistics companies in China. The research results in this paper show that the evaluation results of the performance evaluation index system of China's logistics enterprises are basically consistent with the development status of logistics enterprises. At present, insufficient R&D investment and weak talent attraction are the main reasons why traditional transportation and storage logistics companies lag behind comprehensive service logistics enterprises. The difference in asset return capability and customer service level is an important indicator of the gap between China's 5A-level logistics companies.

Key words: logistics enterprise performance, evaluation index, comprehensive weight model, BP neural network