[1] Turner V., Gantz J. F., Reinsel D., et al. The Digital Universe of Opportunities:Rich Data and the Increasing Value of the Internet of Things[R]. International Data Corporation, White Paper, IDC_1672, 2014
[2] Mann G. S., McCallum A. Generalized Expectation Criteria for Semi-Supervised Learning with Weakly Labeled Data[J]. Journal of Machine Learning Research, 2010,11(2):955-984
[3] Tang K., Sukthankar R., Yagnik J., et al. Discriminative Segment Annotation in Weakly Labeled Video[C]. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013
[4] Xu X., Li W., Xu D., et al. Co-Labeling for Multi-View Weakly Labeled Learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016,38(6):1113-1125
[5] 程圣军. 基于带约束随机游走图模型的弱监督学习算法研究[D]. 哈尔滨工业大学博士学位论文, 2014
[6] Chapelle O., Scholkopf B., Zien A. Semi-Supervised Learning[J]. IEEE Transactions on Neural Networks, 2009,20(3):542-542
[7] Zhu X., Ghahramani Z., Lafferty J. Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions[C]. In Proceedings of the 20th International Conference on Machine Learning, 2003
[8] Andrews S., Tsochantaridis I., Hofmann T. Support Vector Machines for Multiple-Instance Learning[C]. Advances in Neural Information Processing Systems, 2003
[9] Zhou Z. H., Zhang M. L. Multi-Instance Multi-Label Learning with Application to Scene Classification[C]. Advances in Neural Information Processing Systems, 2007
[10] Rueping S. Svm Classifier Estimation from Group Probabilities[C]. In Proceedings of the 27th International Conference on Machine Learning, 2010
[11] Quadrianto N., Smola A. J., Caetano T. S., et al. Estimating Labels from Label Proportions[J]. The Journal of Machine Learning Research, 2009,10:2349-2374
[12] Lai K. T., Yu F. X., Chen M. S., et al. Video Event Detection by Inferring Temporal Instance Labels[C]. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014
[13] Yu F. X., Cao L., Merler M., et al. Modeling Attributes from Category-Attribute Proportions[C]. In Proceedings of the 22nd ACM International Conference on Multimedia, 2014
[14] Yu F., Liu D., Kumar S., et al. Svm for Learning with Label Proportions[C]. In Proceedings of the 30rd International Conference on Machine Learning, 2013
[15] Stolpe M., Morik K. Learning from Label Proportions by Optimizing Cluster Model Selection[C]. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2011
[16] Hernández-González J., Inza I., Lozano J. A. Learning Bayesian Network Classifiers from Label Proportions[J]. Pattern Recognition, 2013,46(12):3425-3440
[17] Belkin M., Niyogi P., Sindhwani V. Manifold Regularization:A Geometric Framework for Learning from Labeled and Unlabeled Examples[J]. Journal of Machine Learning Research, 2006,7(Nov):2399-2434
[18] Chen L., Tsang I. W., Xu D. Laplacian Embedded Regression for Scalable Manifold Regularization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012,23(6):902-915
[19] Kück H., de Freitas N. Learning About Individuals from Group Statistics[C]. In Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence, 2005
[20] Chen B. C., Chen L., Ramakrishnan R., et al. Learning from Aggregate Views[C]. In Proceedings of the 22nd IEEE International Conference on Data Engineering, 2006
[21] Hinton G. E., Dayan P., Revow M. Modeling the Manifolds of Images of Handwritten Digits[J]. IEEE Transactions on Neural Networks, 1997,8(1):65-74
[22] Melacci S., Belkin M. Laplacian Support Vector Machines Trained in the Primal[J]. Journal of Machine Learning Research, 2011,12(3):1149-1184
[23] Joachims T. Transductive Learning Via Spectral Graph Partitioning[C]. In Proceedings of the 20th International Conference on Machine Learning, 2003
[24] Zhou D., Bousquet O., Lal T. N., et al. Learning with Local and Global Consistency[C]. In Advances in Reural Information Processing Systems, 2003 |