›› 2019, Vol. 31 ›› Issue (2): 119-129.

• 电子商务与信息管理 • 上一篇    下一篇

社交属性网下基于链路预测及节点度的推荐算法

江若然, 张玲玲   

  1. 中国科学院大学经济与管理学院, 北京 100190
  • 收稿日期:2017-02-27 出版日期:2019-02-28 发布日期:2019-03-07
  • 通讯作者: 张玲玲,中国科学院大学经济与管学院教授,博士生导师,博士
  • 作者简介:江若然,中国科学院大学经济与管学院硕士研究生,硕士;张玲玲,中国科学院大学经济与管学院教授,博士生导师,博士
  • 基金资助:

    国家自然科学基金项目(71471169)

Recommendation Algorithm Based on Link Prediction and Node Degree Using a Social-Attribute Network

Jiang Ruoran, Zhang Lingling   

  1. School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190
  • Received:2017-02-27 Online:2019-02-28 Published:2019-03-07

摘要:

社交网络的出现使现代人们沟通交流的方式发生了颠覆性的变化。不断有研究者从社会角度和技术角度对社交网络进行研究。链路推荐是一个非常重要的任务,一方面增强网络内部联系,另一方面改善用户体验。目前,在考虑网络结构信息和节点属性信息的社交属性拓展网络模型中链路预测算法中还没有很好的综合利用两种信息对链路生成的影响。本文在基于局部信息的链路预测算法下考虑不同类型共同邻居节点对链路生成的影响,并将其应用于社交属性拓展网络模型中。在改进的算法中,用户共同邻居节点和属性共同邻居节点对链接相关性的影响被给予不同的处理。在Google+社交数据集的实验表明,在社交属性拓展网络模型下,本文改进算法优于不考虑共同邻居节点影响的算法。在总结实验结果中用户共同邻居节点和属性共同邻居节点对链接生成的不同影响后,对不同类型节点的处理方法提出指导性建议。

关键词: 链路预测, 社交属性网, 节点的度, 推荐系统, 共同邻居

Abstract:

Social networking platforms disruptively change the way modern people communicate. More and more researches have focused on social networks from the social and technological perspectives. Link recommendation is a very important task. It not only can enhance internal linkage, but also will help improve the user experience. The existing link prediction algorithms in social-attribute network model do not comprehensively utilize the network structure information and attribute node information. This paper proposes several improved algorithms of link prediction based on local information, which combine effects of different types of common neighbors on social-attribute network model. These improved algorithms are given diverse treatment for the different influence from user common neighbor node and attribute common neighbor nodes. The test results in Google+ data set show that improved algorithm outperforms the algorithm, which does not consider the influence of common neighbor nodes on social-attribute model. After summarizing the different effects of diverse common neighbor nodes on link prediction, this paper provides corresponding suggestions on processing of different types of nodes.

Key words: link prediction, social attribute networks, node degrees, recommendation system, common neighbors