›› 2018, Vol. 30 ›› Issue (1): 67-77,153.

• 经济与金融管理 • 上一篇    下一篇

连续时间的IS-LM模型稳定性与仿真研究

王祥兵1,2   

  1. 1. 怀化学院经济学院, 怀化 418000;
    2. 贵州工程应用技术学院经济与管理学院, 毕节 551700
  • 收稿日期:2015-10-19 出版日期:2018-01-28 发布日期:2018-01-24
  • 作者简介:王祥兵,怀化学院经济学院教授,贵州工程应用技术学院经济与管理学院教授,博士。
  • 基金资助:

    国家自然基金项目(71561007);贵州省科技基金项目(黔科合R字[2013]2008号);贵州省科技厅软科学重点课题(黔科合基础[2016]1534-3号);贵州省教育厅自然科学创新群体重大项目(黔教合KY字[2017]051);贵州省科技厅联合基金(黔科合LH字[2017]7001号);毕节学院科研创新课题(G2013001);怀化学院金融学重点学科资助。

Continuous Time IS-LM Model Stability and Simulation

Wang Xiangbing1,2   

  1. 1. School of Economics, Huaihua University, Huaihua 418000;
    2. School of Economics & management, Bijie University, Bijie 551700
  • Received:2015-10-19 Online:2018-01-28 Published:2018-01-24

摘要:

在现代经济学标准假设下,构建连续时间的动态IS-LM模型,对IS-LM模型的动态演化特征进行研究和仿真分析,揭示了连续时间IS-LM系统动态演化的特征、条件及系统均衡点拓扑结构。研究表明:IS-LM动态系统在周期振荡条件下具有稳定的焦点、不稳定焦点和中心点等三类均衡点,系统均衡有稳定焦点均衡、不稳定的焦点均衡和中心点均衡三类;当IS-LM动态系统满足非周期振荡条件时,其均衡点有稳定的节点、不稳定节点、鞍点、星型节点四类,系统均衡有稳定的节点均衡、不稳定的节点均衡、鞍点均衡三类,仿真分析验证了理论分析结果。

关键词: IS-LM模型, 稳定性, 周期性振荡, 节点, 焦点

Abstract:

Continuous time IS-LM model is built under standard assumptions of modern economics, asymptotic stability, oscillation conditions and the analytical solution of IS-LM model system are revealed based on continuous time IS-LM model, and the topological characteristics of its equilibrium are analyzed. The theoretical analysis results are verified and the polymorphism of economy system dynamic evolution is intuitively shown by dynamic simulation. The research shows that continuous time IS-LM dynamic system has three types of equilibrium:stable focus, unstable focus and center; system equilibrium has three types:stable focus equilibrium, unstable focus equilibrium and center equilibrium under the condition of periodic oscillation; continuous time IS-LM dynamic system has four types of equilibrium:stable nodes, unstable node, saddle point and star node; system equilibrium has four types equilibrium:stable equilibrium, unstable equilibrium, saddle point equilibrium under the condition of nonperiodic oscillation.

Key words: IS-LM model, stability, periodic oscillation, node, focus