管理评论 ›› 2025, Vol. 37 ›› Issue (9): 27-41.

• 经济与金融管理 • 上一篇    

基于混合深度学习模型的上市公司绿色信贷违约风险预测研究

陈炜, 周全世, 陈振松, 姚银红   

  1. 首都经济贸易大学管理工程学院, 北京 100070
  • 收稿日期:2024-03-26 发布日期:2025-10-13
  • 作者简介:陈炜(通讯作者),首都经济贸易大学管理工程学院教授,博士生导师,博士;周全世,首都经济贸易大学管理工程学院博士研究生;陈振松,首都经济贸易大学管理工程学院副教授,硕士生导师,博士;姚银红,首都经济贸易大学管理工程学院副教授,硕士生导师,博士。
  • 基金资助:
    国家自然科学基金项目(72071134;72101166);北京社会科学基金重点项目(24GLA009);北京市属高校高水平科研创新团队建设支持计划资助项目(BPHR20220120);首都经济贸易大学学术创新团队项目(XSCXTD202401)。

A Study on Predicting Green Credit Default Risk of Publicly Listed Companies through a Hybrid Deep Learning Model

Chen Wei, Zhou Quanshi, Chen Zhensong, Yao Yinhong   

  1. School of Management and Engineering, Capital University of Economics and Business, Beijing 100070
  • Received:2024-03-26 Published:2025-10-13

摘要: 近年来,绿色信贷在推动我国绿色金融体系构建和经济高质量发展中发挥着越来越重要的作用,然而,上市公司在绿色信贷活动中的违约行为将带来金融市场的信任危机以及影响“双碳”目标的实现。因此,如何精准识别和预测上市公司的绿色信贷违约风险已成为学界和业界共同关注的热点。基于此,首先,本文构建综合绿色信贷违约占比和主体信用评级的违约风险度量指标,并挖掘上市公司绿色信贷数据开展特征工程;其次,基于自编码机制,融合多种神经网络技术,设计AE-MA-CNN-LSTM混合深度学习模型对上市公司绿色信贷违约风险进行预测;最后,选取我国A股上市公司为样本进行实证分析。结果表明:本文提出的方法在多个评价指标方面取得了更好的预测效果,具有较高的召回率和AUC。本研究为识别和防控上市公司绿色信贷风险提供了新的视角,对政府和投资者及时掌握企业绿色信贷动态具有参考价值。

关键词: 绿色信贷, 违约风险预测, 混合深度学习, 自编码器

Abstract: In recent years, green credit has played an increasingly important role in promoting the construction of China’s green financial system and facilitating high-quality economic development. However, default activities of listed companies in green credit may pose a trust crisis in the financial market and hinder the achievement of the "dual carbon" goals. Therefore, accurately identifying and predicting the green credit default risk of listed companies has become a focus in both academia and the industry. To address this, this paper first constructs a comprehensive measure of default risk, by incorporating the proportion of green credit defaults and the credit ratings of entities. And we process feature engineering by excavating the characteristics of green credit data for listed companies. Subsequently, a hybrid deep learning model, named AE-MACNN-LSTM, is designed by incorporating an AutoEncoder mechanism and various neural networks to predict the green credit default risk of listed companies. Finally, an empirical test is conducted based on samples of A-share listed companies in China. The results indicate that the proposed method achieves significant improvements in multiple evaluation metrics, such as high recall rates and AUC values. This research provides a novel perspective for identifying and mitigating the green credit risk of listed companies, offering valuable insights for the government and investors to timely grasp the dynamics of corporate green credit.

Key words: green credit, default risk predict, hybrid deep learning, AutoEncoder