管理评论 ›› 2023, Vol. 35 ›› Issue (12): 40-52.

• 经济与金融管理 • 上一篇    下一篇

基于多源异构数据的玉米期货价格可解释性预测

曾宇容1,2, 吴彬溶3, 王林3, 张金隆3   

  1. 1. 湖北经济学院信息工程学院, 武汉 430205;
    2. 湖北省互联网金融信息工程技术研究中心, 武汉 430205;
    3. 华中科技大学管理学院, 武汉 430074
  • 收稿日期:2022-05-31 出版日期:2023-12-28 发布日期:2024-01-30
  • 通讯作者: 吴彬溶(通讯作者),华中科技大学管理学院博士研究生。
  • 作者简介:曾宇容,湖北经济学院信息工程学院教授,博士;王林,华中科技大学管理学院教授,博士生导师,博士;张金隆,华中科技大学管理学院教授,博士。
  • 基金资助:
    国家社会科学基金重大项目(20&ZD126)。

Interpretable Corn Futures Price Forecasting with Multivariate Heterogeneous Data

Zeng Yurong1,2, Wu Binrong3, Wang Lin3, Zhang Jinlong3   

  1. 1. School of Information Engineering, Hubei University of Economics, Wuhan 430205;
    2. Hubei Internet Finance Information Engineering Technology Research Center, Wuhan 430205;
    3. School of Management, Huazhong University of Science and Technology, Wuhan 430074
  • Received:2022-05-31 Online:2023-12-28 Published:2024-01-30

摘要: 玉米期货价格预测和预警工作有助于指导农业经济高质量发展,而自2020年6月以来我国玉米期货价格波动剧烈,亟需准确高效的玉米期货价格预测方法。针对现有研究未充分考虑疫情、政策调控及新闻文本中潜在的预测信息等不足,本文综合考虑了玉米市场的供求关系、政策调整、国际市场冲击、疫情冲击、突发事件的影响等导致玉米价格波动的多重因素,设计了有效的玉米期货价格可解释性预测框架。同时,针对现有玉米期货价格预测可解释性不足的问题,提出了一种新颖的DE-TFT可解释性玉米期货价格预测模型,该模型采用差分进化算法对时域融合变换器(temporal fusion transformers,TFT)的参数进行智能高效的优化。TFT是一种新颖的基于注意力的深度学习模型,将高性能预测与时间动态可解释分析相结合,表现出优异的预测性能。TFT模型可以产生可解释的玉米期货价格预测结果,包括时间步长的注意力分析和输入变量的重要性排序。在实证研究中,潜在狄利克雷分配模型用来分析“中华粮网”收集的玉米新闻资讯和政策调整的内容及主题,卷积神经网络用来提取新闻资讯的潜在预测信息,可解释的实验结果表明,反映国内疫情状况的百度指数“疫情”的引入和量化后的玉米新闻文本特征都能进一步提升玉米期货价格预测的精度。

关键词: 玉米期货价格, 时间序列预测, 可解释性神经网络, 文本挖掘, 深度学习

Abstract: The prediction and early warning of corn futures prices can help guide the high-quality development of the agricultural economy. Since June 2020, the corn futures prices have fluctuated violently, and accurate and efficient corn futures price forecasting methods are urgently needed. Given the problem that the existing researches do not fully consider the pandemic situation, policy regulation, and potential forecast information in news texts, this research, based on both qualitative and quantitative data, proposes an effective forecast framework for corn futures price interpretability, which takes multiple factors into consideration, such as the supply and demand relationship of the corn market, policy adjustments, international market shocks, epidemic shocks, the impact of emergencies and other factors that lead to the fluctuation of corn prices. At the same time, aiming at the problem of insufficient interpretability of existing corn futures price prediction, a novel DE-TFT interpretable corn futures price prediction model is proposed. The differential evolution algorithm is used to efficiently optimize the parameters of the Temporal Fusion Transformers (TFT). TFT is a novel attention-based deep learning model that combines high-performance forecasting with temporal dynamic interpretable analysis, showing excellent performance in forecasting research. The TFT model can produce interpretable corn futures price prediction results, including attentional analysis of time steps and importance ranking of input variables. In the empirical study, the latent dirichlet allocation topic model is used to analyze the content and topics of corn news information and policy adjustments collected by “China Grain Network”, and the CNN classification model is used to extract the potential prediction information of news information. The interpretable experimental results show that the introduction of the Baidu index “pandemic”, which reflects the domestic epidemic situation and the quantified corn news text features, can further improve the accuracy of corn futures price prediction.

Key words: corn futures price, time series forecasting, interpretable neural networks, text mining, deep learning