管理评论 ›› 2020, Vol. 32 ›› Issue (7): 138-149,190.

• 中国系统管理学专辑 • 上一篇    下一篇

基于TEI@I方法论的台风物资动态配置时效性研究

曲冲冲1, 王晶2, 周永圣2, 何明珂3, 张京敏2   

  1. 1. 中国人民大学商学院, 北京 100872;
    2. 北京工商大学电商与物流学院, 北京 100048;
    3. 北京物资学院物流学院, 北京 101149
  • 收稿日期:2019-09-16 出版日期:2020-07-28 发布日期:2020-08-08
  • 通讯作者: 周永圣(通讯作者),北京工商大学电商与物流学院副教授,博士
  • 作者简介:曲冲冲,中国人民大学商学院博士研究生;王晶,北京工商大学电商与物流学院教授,博士生导师,博士;何明珂,北京物资学院物流学院教授,博士生导师,博士;张京敏,北京工商大学电商与物流学院副教授,硕士。
  • 基金资助:
    北京市哲学社会科学基金项目(18GLC074)。

Research on Timeliness of Dynamic Reserve Reliefs after Typhoon Based on TEI@I Methodology

Qu Chongchong1, Wang Jing2, Zhou Yongshen2, He Mingke3, Zhang Jingmin2   

  1. 1. School of Business, Renmin University of China, Beijing 100872;
    2. School of E-Business and Logistics, Beijing Technology and Business University, Beijing 100048;
    3. School of Logistics, Beijing Wuzi University, Beijing 101149
  • Received:2019-09-16 Online:2020-07-28 Published:2020-08-08

摘要: 灾情信息预测在台风灾害救援过程中的重要程度日益凸显。基于TEI@I方法论的理论框架,本文提出了适用于台风灾害救援物资储备需求的TEI@I综合集成预测模型,预测和分析了基于TEI@I的救援物资信息更新的集成预测理论框架的各个部分。结果表明,基于TEI@I的综合集成预测模型在预测精度和运算时间方面优于其他仿真模型,TEI@I方法论中对非线性预测结果调整后的NGA模型的运算时间从200s降低至99.92s,三项精准度预测目标均达到最小,提升了预测效率和精度。同时TEI@I方法论对救援时效性因素开展分析,引入了对灾害信息非线性需求的分析和预测,结合预测时间序列的集成,进一步提升了模型的预测精度。

关键词: TEI@I方法论, 小生境遗传算法, 台风灾害, 时效性

Abstract: The importance of the disaster information forecast is growing in the process of disaster relief. This paper presents an integrated forecasting model based on the TEI@I methodology for typhoon disaster relief materials reserving with the example of super typhoon Lekima. The empirical results reveal that TEI@I methodology integrated model can significantly improve the prediction performance over other simulation algorithms models presented in this study, especially the nonlinear prediction results adjusted NGA model of operation time reduced from 200s to 99.92s based on TEI@I methodology. The connotation of "decomposition before integration" in TEI@I methodology introduces the analysis and prediction of non-linear demand. TEI@I methodology can not only analyze the impact of the timeliness requirement of the external environment on the demand for relief materials, but also integrate the time series after analysis to improve the prediction accuracy of the model.

Key words: TEI@I methodology, NGA, typhoon disaster, timeliness