›› 2019, Vol. 31 ›› Issue (11): 33-43.

• 经济与金融管理 • 上一篇    下一篇

基于Twin SVR的公司违约风险预测研究

林宇1, 吴庆贺1, 李昊1,2, 唐晓华3   

  1. 1 成都理工大学商学院, 成都 610059;
    2 中国农业银行合肥新站高新区支行, 合肥 230011;
    3 四川工商职业技术学院, 成都 611830
  • 收稿日期:2019-03-21 出版日期:2019-11-28 发布日期:2019-11-30
  • 通讯作者: 林宇,成都理工大学商学院教授,博士生导师,博士
  • 作者简介:吴庆贺,成都理工大学商学院硕士研究生;李昊,中国农业银行合肥新站高新区支行,硕士;唐晓华,四川工商职业技术学院讲师,硕士。
  • 基金资助:

    国家自然科学基金面上项目(71771032);四川省科技计划项目(2017JY0158);四川矿产资源研究中心资助项目(SCKCZY2016-ZC05)。

Research on Corporate Default Risk Prediction Based on Twin SVR

Lin Yu1, Wu Qinghe1, Li Hao1,2, Tang Xiaohua3   

  1. 1 School of Business, Chengdu University of Technology, Chengdu 610059;
    2 Gaoxin Sub-Branch, Hefei Branch, Agriculture Bank of China, Hefei 230011;
    3 Sichuan Technology Business College, Chengdu 611830
  • Received:2019-03-21 Online:2019-11-28 Published:2019-11-30

摘要:

本文以发行短期融资券的公司为研究对象,首先基于信用利差构建出公司违约风险变量,然后运用Twin SVR模型对公司违约风险展开预测,最后对影响公司违约风险Twin SVR模型预测性能的特征指标解释能力进行了探讨。实证结果表明:在Twin SVR模型的构建过程中,发现RBF核函数展示出了比Polynomial、Linear和Sigmoid核函数更加卓越的预测性能;与传统的SVR、BPNN以及Logistic公司违约风险预测模型相比,Twin SVR模型不仅在整体行业中具有最优的预测性能,而且在分行业中具有优异的泛化性能;对于影响Twin SVR模型预测性能的前两位特征指标解释能力来说,在整体行业和有色金属行业中前两位最具解释能力的指标为信用评级和是否为国有企业,在煤炭和钢铁行业中为信用评级和净资产收益率。

关键词: Twin SVR, 公司违约风险, 短期融资券, 预测

Abstract:

This paper, taking companies that issue short-term financing bond as the objects of research, establishes a suitable method based on the credit spread to analyze the corporate default risk, then applies Twin-SVR (Twin Support Vector Regression) to predict the corporate default risk and finally explores the ability to interpret the characteristic indicators that affect the predictive performance of Twin-SVR default risk model. The empirical results are as follows:During the construction of the Twin-SVR model, we find that the RBF kernel function exhibits better prediction performance than the Polynomial, Linear, and Sigmoid kernel functions; compared with the traditional SVR, BPNN and Logistic corporate default risk prediction models, the Twin-SVR model not only has the best prediction performance and stability performance in the overall industry, but also has excellent generalization performance in the sub-industry; for the interpretation ability of the top two characteristic indicators that affect the prediction performance of Twin-SVR model, we find that the most explanatory two indicators in the overall industry and non-ferrous metal industry are credit rating and SOE/non-SOE background, and in the coal and steel industry, the top two indicators are credit rating and ROE.

Key words: Twin SVR, corporate default risk, short-term financing bond, prediction